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Abstract—The Border Gateway Protocol (BGP) is the single
routing protocol that glues the Internet together. Its performance,
especially the convergence speed after path changes, is key to
global efficiency, also in light of the fact that the number of
Autonomous Systems (ASes) and Subnets has reached a level
that makes path changes a frequent event. This work presents a
testbed-based experimental analysis of BGP convergence time
under different hypothesis of Minimum Route Advertisement
Interval (MRALI) setting and a proposal to improve it by setting
MRALI based on the topological position of the ASes. MRAI is a
timer that regulates the frequency of successive UPDATE messages
sent by a BGPs router for a given route and destination. The
work is based on the modifications of the BIRD BGP daemon
and shows that it is possible to execute experiments on testbeds
with topologies that have Internet-like characteristics scaling up
to thousands of ASes.

I. INTRODUCTION

The protocol architecture of the Internet follows an “hour-
glass” design with IP (v4 or v6) as unifying layer, the slim
waist of the hourglass, managing global addresses and routing.
Maybe less known is that the IP layer has an even “slimmer”
waist when it comes to global routing with Border Gateway
Protocol (BGP) as the single Exterior Routing Protocol (ERP)
that interconnects Autonomous Systems (ASes), both for IPv4
and IPv6.

BGP is a very complex protocol defined in tens of dif-
ferent RFCs, and its description and details are beyond the
scope of this paper; however it is not difficult to imagine
that, as the single protocol that keeps the global internet
working, experimenting with it and proposing innovations
and improvements is very difficult, if feasible at all. On-line
experiments are out of question as a failure would mean
interrupting Internet connectivity for millions of users, and
simulations are too approximate for global operators to trust
them to modify their routing policies. Exemplary in this context
is the seminal study of Fabrikant, Rexford et al. [1] that
shows that modifying one parameter of BGP, namely the
Minimum Route Advertisement Interval (MRAI), to try to
improve performance without appropriate coordination can
lead in specific cases to the exponential growth of the number
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of UPDATE messages required to achieve a new stability point
after a route change. The result in [1] is purely theoretical (no
experiments or simulations are presented to verify the expected
results), but correctly a negative theoretical results is enough
to stop pursuing an innovative direction. Unfortunately BGP
is way too complex to attempt an overall theoretical modeling
that not only shows that in some specific cases the network may
become unstable (exponential growth of signaling messages),
but that there might be other sound strategies that lead to
improve performance without hampering stability.

Our work has the ambition to show that it is possible to
experiment with a real implementation of BGP, namely BGP
Internet Routing Daemon (BIRD),! reproducing with a real im-
plementation and measures the results in [1], and then building
topologies that correctly mimics Internet characteristics with
thousands of nodes. We also show that there are strategies that
allow to improve the convergence of BGP without hampering
its stability.

II. BACKGROUND AND MOTIVATION

Global routing and BGP are, strangely enough, somewhat
niche topics in research, often deemed more technical issues
to be solved by providers, than scientific arguments needing
sound analysis and solutions. Clearly there exist several papers
dealing with BGP and its characteristics and features (see [2]
and citations therein or [3] to name a few), but the core itself
of BGP, i.e., the Path Vector descriptors exchanged by Exterior
BGP (eBGP) routers, and the policy-based routing algorithms,
do not lend themselves to rigorous theoretical analysis and
modeling, thus preventing elegant and sound theoretical results
similar to those available for link state and distance vector
routing protocols.

BGP research has traditionally been based on simulations
[4]-[6] and/or small-scale testbeds [7], [8], with a few works
like the already cited paper by Fabrikant et al. [1], addressing
specific issues with a theoretical analysis based on heuristics
considerations on BGP dynamics. Other significant works on
the subject are based on measures, like the seminal analysis in
[9], that clearly identifies the key role of BGP in properties and

IBIRD is one of the most used and well maintained BGP open source
implementations; see https://bird.network.cz/



performance of the global Internet, or [10], [11] analyzing pre-
fix scaling and router ownership boundaries, but they normally
document the behavior or the properties and consequences
of BGP rather than exploring possible improvements; the
PEERING testbed [12] offers an infrastructure to experiment
with BGP, but does not seem prone to explore performance or
major protocol modifications.

One of the prominent themes in this body of literature is the
trade-off between the generated overhead and the convergence
speed of BGP after a reconfiguration event. BGP is known to
be subject to path exploration, a transitory phenomenon that
happens when a router adopts and publishes a sequence of non-
optimal paths for a destination before reaching a stable state.
Path exploration can generate thousands of update messages
in networks made of as few as tens of nodes [13]. In order to
reduce the message overhead, BGP uses MRAI, the minimum
time between two consecutive UPDATE for the same destination
sent to the same neighbor, which is set by default to 30s
[14]. MRAI reduces the overhead but strongly impacts BGP
convergence [15] and its default value was often discussed
[16]. Unfortunately, changing BGP is a tricky task: any viable
solution, as highlighted in [2], should encompass at least the
following characteristics:

o Incremental deployment: it cannot require to “reboot" the
Internet;

o Computational overhead: it must be usable on current
hardware;

o Changing BGP behavior: it should not change the macro
behavior of BGP;

o Constraints to BGP expressiveness: it cannot limit the
current flexibility of BGP; and,

o Coordination between ASes: it cannot require explicit
cooperation among ASes.

On top of this, Fabrikant et al. introduced a key observation:
an uncoordinated change in MRAI could produce in certain
realistic topologies an exponential growth in the generated
overhead. This theoretical result produced a research deadlock,
since a coordinate change is not possible and an uncoordinated
change can lead to instability, MRALI is still set to 30s.2

The goal of this paper is to open the way to automate MRAI
configuration dynamically in BGP with a solution respecting
all the five points above, which requires three key steps.

a) Provide a scalable and repeatable BGP experimenta-
tion framework: This paper provides an experimental approach
that enables the emulation of networks made of thousands
of routers, in order to compare different approaches on
real code. For this purpose we used the open source BIRD
project as already mentioned, one of the most popular BGP
implementations worldwide and we reproduce two kinds of
network topologies, the ones analyzed by Fabrikant, and
Internet-Like topologies. We modified BIRD to implement
MRALI as described by RFC 4271 [14], as MRALI is not currently
supported. Our experience confirms that we can emulate

2As a relevant example, Cisco suggests 30 s MRAI for any regular eBGP
peer [17].
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Figure 1: Sketch of the testing system.

networks made of thousands of nodes, and we are confident
we can reach tens of thousands following sound experimental
research principles. All the decribed tools (topology generators,
deployment scripts, logging parsers, ...) were developed during
the Internet on FIRE (IoF) project in the context of the
Fed4FIRE+ experimentation facilities, and are documented and
published on-line.?> All experiments have been replicated several
times during the project to ensure that results are consistent
and due to the phenomena described and explained, and not
to random variations of the environment;

b) Confirm Fabrikant Results: We use our emulation
framework to confirm Fabrikant’s results, which is is key to
understand the risks associated to dynamically setting MRAI.
We reproduce and confirm Fabrikant observation in Section V;

c) Towards a dynamic MRAI strategy: We provide the
initial design of a strategy to dynamically set MRAI. We
introduce a proposal to set MRAI timers based on Destination
Partial Centrality (DPC) a destination-based centrality metric
which can be computed by every router without coordination
with other ASes. Our initial results are based on the assumption
of knowledge of the BGP topology, but confirm experimentally
that we can improve the performance of the standard BGP
configuration while avoiding the pitfall described in [1].

III. BGP EXPERIMENTAL FRAMEWORK ON FED4FIRE+

Emulating BGP involves a number of complex steps that
are needed to recreate realistic conditions. First, we need to
generate a topology of BGP routers, which strongly influences
the final outcome. Then we need to set BGP policies on the
routers and the MRAI timers for each node or edge (which
can depend on the topology), finally we need to translate this
model information into configuration files for BIRD. Only then
we can run a number of repetitions of the experiment and
collect results. Figure 1 shows a sketch of the steps involved.

A. BGP topology

Let us review the model we use to represent a BGP network
providing the minimum level of detail needed to understand
our testing framework and results.

We model a BGP network as an undirected graph G(V, E)
(no self-loops, no multi-edges) in which nodes in V are
eBGP speaker routers representing an AS, and en edge in
FE represents a BGP advertisement (ADV) communication
link (hence undirected). We extended the model provided by

3See https://iof.disi.unitn.it, and the related github repository https://github.
com/iof



Elmokashfi et al. [18] with nodes and edges attributes necessary
for our analysis. For brevity, we do not re-define all the terms
which can be found in the original paper. With respect to nodes
the attributes are:

o type {T, M, C, CP}: defines the type of AS, i.e., tier-1,
mid-level, customer, or content provider, respectively;

« destinations: a string of comma separated IPv4 network
identifiers with the respective netmask, indicating the list
of networks the AS exposes.

Given ¢,j € V, the attributes for an edge (i,5) € E are:

o type {transit, peer}: indicates whether there is a customer-
provider (i.e., ¢ pays j for transit or vice versa) or a peering
relationship (i.e., ¢ and j agreed to exchange traffic under
certain conditions for free);

e customer z € V: if the edge (¢,7) is of type transit, z
identifies which node between ¢ and j is the customer,
else, this attribute is set to “none’;

o mrail (seconds): indicates the per-link (¢, j) MRAI timer
set on node ¢ (initially left blank);

o mrai2 (seconds): indicates the per-link (7, 7) MRAI timer
set on node j (initially left blank).

The topology information is stored in a GraphML file, a
standard format to represent graphs. For the time being we
realized two graph generators, the first reproduces the so-called
“chain gadget” described in the work of Fabrikant et al. [1] that
we use to verify their findings. Gadgets are chains of rings of
arbitrary length, depicted in Fig. 2a in which each link is of type
transit, to generate a pathological case of exponential UPDATE
messages proliferation. The second generator produces Internet-
like graphs of arbitrary dimension using the algorithm proposed
by Elmokashfi et al. [18] that preserves the structure of the
Internet from a stochastic perspective (i.e., the distribution of
tier-1, mid-level, customer, and content provider ASes as well
as their relationships). Figure 2b reports an example network.

B. Policy and MRAI Generator

BGP decides the next hop for a certain destination based
on the knowledge of the path to the destination and on the
policies that are configured in the router. A policy is a set of
preferences on which neighbor to prefer and on which path
to prefer when multiple ones are available. We implement
the widely-used “valley-free” policy. Routers announce to all
neighbors routes learned from customers, while they announce
only to customers routes learned from peers or providers. An
AS chooses the path following the default breaking ties rules
of BGP [14] (preference policies, shortest AS path, lowest
origin AS number, etc.). In addition to standard policies we
can generate specific BGP policies such as the rules that are
required in order to reproduce the exponential convergence
theorized by Fabrikant in chain gadgets. Policies are produced
as configuration files for BIRD. In this phase we also define
the MRAI timers depending on the strategy to be evaluated
(for example, a constant value for all nodes, a value drawn
from a uniform distribution, etc.).
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Figure 2: The two types of BGP topologies the tool currently
supports. (a) Small hand-build (gadget) topologies to show particular
phenomena; (b) Internet-like topologies following [18] model where
tier-1, mid-level, customer, and content-provider nodes are represented
in orange, cyan, purple, and green, respectively.

The output of this phase is again a GraphML file with the
same format as the one used to describe the AS topology, only
with additional attributes, plus a file expressing policies.

C. Configuration Generator

The next step is the generation of the configurations for the
different ASes meaning, in fact, generating the configuration
files used by BIRD. Each AS is managed by a BIRD instance,
so we generate the configuration files required by each daemon
starting from the GraphML and the policies. The tool also
generates the scripts to configure the interfaces and the IP
addresses to enable the communication between the different
ASes. The configuration setup used during the experiment
is shown in Fig. 3. In IoF we test potentially very large
topologies (we successfully ran experiments up to 8000 nodes,
results not presented here), so having one BIRD instance per
physical testbed node might not be feasible. We thus run
several BIRD instances for CPU inside a Linux Namespace,
so that each instance is isolated from the others. To enable the
communication between different instances (even on different
testbed nodes), we have one virtual interface per namespace
which is bridged with all the others and with the physical
interface of the node. As a result, each virtual interface is
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Figure 3: Configuration of the BGP network on the testbed.

in fact connected to the same physical network through the
switch, so by simply configuring a /30 IP subnet per each AS
pair, the ASes can establish BGP peering sessions through
TCP. The example in Fig. 3 shows two BGP instances per
physical node, but in fact this number is dynamic and depends
on the hardware characteristics of the node.

D. Running the Experiments

What we described so far is a generic procedure that can be
used to prepare experiments in any testbed. The Fed4FIRE+
project provides several testbeds available to researchers
for networking experiments. With specific reference to the
Virtuall Wall 1 and 2,* which we used in IoF the final step
includes reserving the resources, launching the experiment, and
collecting the results. The tools developed in IoF can query for
available resources on multiple testbeds (e.g., Virtual Wall 1
and 2) and automatically generate an rspec file (a configuration
file for experiments) that can be opened in jFed to reserve the
nodes. Once this step is complete, the tool obtains the number
of CPUs for each node and decides how many BGP instances
will be deployed on that node. The tool then installs the required
software and deploys the configuration files generated in the
previous step. Once this is completed, the experiment is ready
to be started. The user can connect to one node of the testbed
which will act as an experiment controller, and from there
launch the experiment. The experiment controller takes in
input the configuration files for BIRD, the reserved resources
(i.e., the hardware description of each testbed node), and the
scenario. The scenario indicates which AS (or ASes) exposes
an IP destination and a triggering router 7 which will increase
the weight of one of its links to start a network reconfiguration
and measure the time required to reach convergence. The link to
use is also a user parameter. Once the experiment is completed,
it is possible to fetch the log files and process the results using
the provided scripts.

IV. COMPARING MRAI STRATEGIES

Fabrikant et al. showed that a combination of a particular
topology and MRALI setting can make the number of UPDATE
messages explode. The key for this to happen is that MRAI
decreases as the distance from T increases.” In the case
MRALI is halved at every hop the number of UPDATE messages
increases exponentially with the network size, but this effect

4See https://doc.ilabt.imec.be/ilabt/virtualwall/hardware. html
SNote that this is not strictly true for all the topologies, but due to space
constraints we use this simplification.

happens with lower probability also with any decreasing
sequence.

A simple solution to this problem would be to always use
an increasing MRAI compared to the previous hop, which
would have two drawbacks, the first is that routers would
need to implement some form of dynamic coordination per
each propagation path, the second is that increasing MRAI
indefinitely will slow down convergence. The intuition at the
base of centrality-based MRALI tuning is that we would like
MRALI to increase in the initial phase, close to T’r, and then,
when the core of routers around T’ stabilized, it should start
decreasing in order to quickly propagate the new stable situation
to the rest of the Internet. To verify the validity of this intuition
we set-up a strategy that exploits the previous knowledge of
the network graph together with the concept of Destination
Partial Centrality (DPC).

DPC is a variant of so-called load centrality which is defined
in its general form as follows [19]: Consider a graph G(V, )
and an algorithm to identify the (potentially multiple) minimum
weight path(s) between any pair of vertices s,d. Let 6, 4 be
a quantity of a generic commodity that is sent from vertex s
to vertex d. We assume the commodity is always passed to
the next hop following the minimum weight paths. In case of
multiple next hops, the commodity is divided equally among
them. We call 0 4(v) the amount of commodity forwarded by
vertex v. The load centrality of v is then given by:

LC(U) = Z es,d(v)

s,deV

(D

DPC adapts load centrality to represent the propagation of
routes in an IP network. In DPC load represents the number
of networks that a BGP node exports. Not all nodes that run
BGP generate load, but all nodes that forward traffic have a
non-zero DPC centrality. We call C C V the set of nodes that
can be source and/or destination of traffic (they export at least
one network) and N, N; the number of networks that are

exported by node s and d, respectively, then 6, 4 = %
DPC A(v) of any vertex v € V is defined as
Aw) =) bsa(v) @)

s,deC

With DPC we model the fact that some Internet routers
export network addresses, and for this reason they generate
changes in the network state, while other routers only forward
traffic, but still their centrality can be larger than zero. In all
our experiments we assign one destination per node, so that
0s.q is always unitary but this is an arbitrary choice that can
be replaced with any other suitable one. In a previous work we
have shown that load centrality can be computed in a distributed
way with minimal modifications to a Distance-Vector routing
protocol. We also experimentally verified that computing DPC
is possible with a custom BGP extension, and thus, it can be
incrementally deployed on the Internet without requiring any
global coordination.® Further theoretical details are outside the

A brief explanation on how to calculate in a distributed way the centrality
can be found at: https://iof.disi.unitn.it/docs/DPConTopOfBGP.pdf



scope of this paper, but principles of centrality-based routing
can be found in [20], [21].

Our proposal configures MRALI as a function of DPC with
the following model: We assume the information contained
in the UPDATE message propagates in the network in three
phases, which identify three propagation graphs:

o Ascending phase graph G (V94 £94): made by the

nodes updated without reaching tier one nodes;

o Tier one graph G (V97 ,£97): made by tier-1 nodes;

o Descending graph phase Gp(V9?,£97) = G(V, &) —

Ga(V94 £94) — Gr(VIT,E97): the rest of the graph.

Considering a graph-wide maximum timer 7" = 30s and
DPC ¢; € [0,1] for node i, DPC-based MRAI T;; used by
node 7 with neighbor j is set as follows:

C; Vi € VQA
Vi € V97T 3)
Taze) 4 T yj g Yoo

vl

Tij =

In this work we pre-compute the propagation graphs and
the DPC in advance, in order to verify that our intuition is
correct. In future works we will relax these requirements and
move towards a fully distributed and incrementally deployable
solution, based on the theory provided by our previous
works [21].

A. Emulation Scenarios

In our emulations we use the two aforementioned topologies
of Fig. 2. In the gadget topology T'r is the leftmost node,
which changes its preference from the 1-labeled edge to the
0-labeled one. We use chain gadgets of increasing size. We
set the MRAI of X; equal to the MRAI of Y; and the MRAI
of X, half of the MRAI of X; as described in [1]. In the
Internet-like topology we choose Tr from the set of the nodes
that will induce the worst case situation i.e., changing the edge
weight will cause a reconfiguration of the highest possible
number of nodes.

In both topologies, in order to trigger the change on the
network we use a well known technique called AS_PATH
Prepending.” For the chain gadget we repeat each emulation ten
times, while for the Internet-like topologies we do 5 repetition
per choice of Tr with 10 different choices of Tx. In all
emulations MRAL is subject to a jitter (5% in chain gadgets and

5% in Internet-like topologies) to avoid perfect synchronization.

In all cases DPC is pre-computed assuming one exposed
destination network per AS (except for tier-1), even if in the
emulation we use only one destination in total, in order to
speed-up the initial convergence of the network. We run the
network, we let the routing tables of all nodes stabilize, then
we trigger the change in Txr. We then wait for all nodes to have
a stable routing table. We measure the convergence time (the
time between the configuration change and the convergence of

7AS_PATH Prepending is a simple way to do traffic engineering on BGP,
it consists in the addition of an arbitrary number of entries in the AS_PATH
list. Changing the AS_PATH length will force the generation of a new BGP
UPDATE on the network.

the slowest node) and the total number of updates generated.
We evaluate these metrics on the following MRALI strategies:

e 30s fixed: the default value according to BGP RFC [14];

e No MRAI: UPDATE messages will be generated without
delay (T35 = 0);

o Fabrikant style: MRAI will be set on each node according
to the policies described in Fabrikant work, to reproduce
the worst case scenario; and,

e DPC-based.

V. RESULTS ON CHAIN GADGETS

Figure 4 reports the convergence time and number of
UPDATE messages for chain gadgets made of 17 nodes. Each
line reports the average of 10 curves (one per run) measured
in a 1s interval (1ms for No MRAI) and Table I reports
aggregated statistics. At time zero T'p triggers a reconfiguration,
and we can clearly see the difference in the behavior of the four
strategies. The 30 s MRALI strategy creates bursts of UPDATE
which make nodes converge gradually, but takes in average
more than 150s with an average of 94 UPDATE messages
generated. The Fabrikant configuration has a long phase in
which all the nodes (excluding one-hop neighbors) don’t have
a valid path, in average it takes roughly 23 s to converge and
requires more than 200 UPDATE messages. The DPC-based
strategy in average converges in less than 17 s, with 66 UPDATE
messages, which is a clear improvement over the previous
strategies. Finally, the No MRALI strategy behaves as expected,
convergence is almost immediate but path exploration generates
130 UPDATE messages concentrated in less than 250 ms.

Figure 5a reports the average number of UPDATE messages
on chains of growing length. We can confirm the abnormal
growth of the number of UPDATE messages in the Fabrikant
configuration compared to any other strategy. The No MRAI
strategy has the second highest number of generated messages
followed by the 30s and the DPC-based strategy. Figure 5b
reports the convergence time: DPC substantially improves
Fabrikant configuration and outperforms the 30 s strategy. No
MRALI always converges in less than a second, and thus is not
reported.

Note that since Fabrikant configuration halves the MRAI at
every hop we could not test chains longer than 17 nodes as the
MRALI value would be negligible, so it is hard to numerically
confirm the exponential growth. Nevertheless we can confirm
that:

o Fabrikant configuration is systematically outperformed by
any other strategy, thus we verified its abnormal trend;

o The No MRALI strategy produces the fastest convergence
but the time-density of UPDATE messages is not sustain-
able since it produces tens of reconfiguration per node
in a few hundreds of milliseconds. While this can be
handled in a small gadget, the computational overhead
needed to update routing tables made of tens of thousands
of destinations would not be acceptable;

o The 30s strategy prevents path exploration but strongly
impacts convergence time; and,
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Figure 4: Time evolution of MRAI strategies on 17 nodes chain.

o DPC-based configuration seems to provide the best trade-
off between convergence speed and number of UPDATE
messages.

VI. INTERNET-LIKE TOPOLOGIES AND SCALING

Once verified that in the critical topologies designed by
Fabrikant DPC-based MRALI proves to be a viable solution, we
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Figure 5: Convergence time and UPDATE messages with chains of
growing length.

Fabrikant Internet-like
Strategy 10" mean 90" 10 mean 90"
» Fabrikant 157.1 201.3 220.8
‘L:, No MRAI 131.3 133.0 138.1
g 30s 81.6 88.5 95.2 18790 24806 34298
DPC 63.0 64.2 66.0 21861 29044 38793
o~ Fabrikant 18.14 22.98 25.35
: No MRAI 0.19 0.20 0.21
g 30s 146.58 156.40 177.22 174.35 184.6 206.37
© DPC 15.60 16.83 18.60 59.09 70.86 88.39

Table I: Statistics on the number of updates and the convergence time
for all the experiments.

report preliminary results obtained on a 4000 node Internet-like
topology. Here we compare only the DPC-based and 30 s MRAI
strategies since Fabrikant configuration can not be ported to
a generic topology, and No MRALI is not a viable solution
with thousands of nodes. Table I reports the main statistics for
both strategies, and show that DPC produces in average more
UPDATE messages but converges in just 38% of time needed
by the 30s strategy.

As further comparison we report the time evolution of all the
emulations in Fig. 6 which outlines some key differences. The
first is that the number of UPDATE bursts (the blue curve spikes
in the figure) is reduced with DPC-based MRAI. This means
that the increase in the total number of messages is compensated
by a smaller number or “rounds” necessary to make BGP
converge. DPC-based centrality does not only reduces the
interval between bursts, it eventually makes each round or
UPDATE exchanges more effective. The second is that with
DPC-based MRAI some rounds of UPDATE exchanges have a
greater effect than others on the number of nodes that reach
convergence; it’s an interesting phenomenon that needs further
study, as it suggests that there are some nodes that are more
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Figure 6: Evolution in time of the two main MRAI strategies on the
same Elmokashfi topology of 4000 nodes, 50 repetitions for each
strategy.

important than others, and should converge as early as possible.
With centrality-based MRAI tuning we would like to help the
convergence of those nodes, and then quickly propagate “good”
information to the rest of the network.

VII. CONCLUSIONS AND FUTURE WORK

Conducting Internet-scale research is extremely challenging
for many reasons. One of them is the performance evaluation of
the proposals, which cannot easily be conducted with (realistic)
simulations or simple lab experiments. The use of large-scale
testbeds is thus a nearly mandatory tool to make this kind
of research credible, but very often testbed results are not
reproducible (e.g., they are run on a private testbed), thus
hampering the scientific value of the work.

We have explored in this work the use of Fed4FIRE+ to
evaluate changes in the management of the MRAI timer
of BGP using the BIRD open source implementation. The
experimental work has been carefully crafted to make results
easily reproducible (see the appendix), offering the community
not only a detailed description of all the experimental machinery
we have developed, but also the code developed, the scripts
to run the experiments and the post-processing tools to obtain
results and graphs.

Besides the intrinsic value of an experimental setup that can
be used to carry out additional research on BGP, our work also
shows that it is indeed possible to improve Internet convergence
after a route change by properly managing MRAI, and this
without the risk of signaling overhead explosion.

Future work includes pushing even further (to more than
10000 nodes) the scale of experiments, as well as fully

developing the theoretical part behind this experimental work
(impossible to do here due to space constraints) to improve the
scientific value of our proposal, and make it more appealing
for adoption on the Internet.
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APPENDIX — REPRODUCING IOF

This tutorial enables the reader to run a single repetition of
one experiment using a pre-built Fabrikant topology with a
Fabrikant-based MRALI strategy, which produces a convergence
graph similar to the one in Fig. 4. Reproducing all the results
would require several experiment hours and several testbed
nodes, so we limit this tutorial to a single experiment. The
on-line resources include the configuration files required to
reproduce all the results in this work. Please follow the
instructions on our website to run different experiments and to
learn how to conduce further research using our tools.® The
main assumptions for this document are the following:

o The reader has a general knowledge of Linux systems;

o The reader has knowledge of jFed’ and how to use it;

o The reader has an account on a Fed4Fire+/GENI authority
and is able to reserve resources on imec Virtual Walls'?;

o The reader has his own ssh public and private key associ-
ated with the iMinds Authority account already configured,
respectively in ~/.ssh/iminds.pub and ~/.ssh/iminds.key.

What follows has been tested on GNU/Linux Ubuntu 18.04,
to help those running a different operating system we provide
a pre-configured Virtual Machine on our website.

First of all, we have to set up the system for the experiment
(not necessary on the Virtual Machine). The first thing to do
is to clone the repository with the whole project, with the
following commands:

mkdir ~/src && cd ~/src/
git clone https://github.com/internetonfire/\
iof-tools.git

Now you will find inside the src folder a new folder called
iof-tools. Inside this folder you’ll find all the resources
needed to execute the experiments. As a first step it is necessary
to set up the environment, installing all the required software
and libraries. This can be done running the following command
(again, not necessary in the VM):

./configure_env.sh

As previously mentioned, we assume that the user
has an iMinds account, with the public and the
unencrypted private keys stored in ~/.ssh/iminds.pub
and ~/.ssh/iminds.key, respectively. If not,
please  follow the instructions provided inside
~/src/iof-tools/README.md.

Inside the iof-tools folder, you will find a folder named
experimentFiles, where you find the configuration files created
by the configuration generator that we used in the paper. Here
we use such pre-configured files, but the IoF website and the
source repository includes detailed instructions for generating
such topologies.

Before launching the experiment, we have to reserve
the resources on the Testbed. The tools include a script

8https://iof.disi.unitn.it

9https://jfed.iminds.be - If you dont’t have jFed installed you can download
it from http://jfed.ilabt.imec.be/downloads/stable/jar/jfed_gui.tar.gz

10https://authority.ilabt.iminds.be

(gen-rspec.py) that can find available resources and gen-
erate an .rspec file for jFed automatically. For our Fabrikant
experiment, only two machines are needed and the fastest
way to reserve them is to use a ready-to-use rspec file inside
the repository utils/2nodes.rspec. Run jFed launching
jFed-Experimenter from command line, then open the
file inside jFed and click on “Run”. Give a unique name to the
experiment and once the nodes are available, save the rspec file
by clicking on the “Save Manifest” and store it in the iof-tools
folder with the name “demo.mrspec”.

Now you can set up the experiment environment with
the following command (substitute IMINDSUSER with your
iMinds authority account username):

python3 gen-config.py -r demo.mrspec —-u \
IMINDSUSER -k ~/.ssh/iminds.key

Now you can install all the software on the nodes (this can
take up to 15 to 20 minutes to complete) by running

./setup-nodes-environment.sh

After the installation and the configuration of the nodes you
can deploy your experiment running:

cp -r experimentFiles/fabrikant/\

bird-config-files/0_fabrikant_fl7n-dest/

./deploy-experiment.sh -d \
0_fabrikant_fl7n-dest

After the deploy you can start the experiment running:

ssh —-F ssh-config node0
./run-experiment.sh -a 19 -n 17 -r 1

The first argument is the AS that triggers the change, the second
one is the link for which the weight is changed (the AS_Id of
the neighboor identifies the link), and the third is how many
repetitions to perform.

After the experiment is complete, exit the ssh session and
fetch the results with

./fetch-results.sh

This script will take care of copying the logs from the Testbed
to your local machine. When prompted by the script whether the
results are for a Fabrikant topology, type “y”. Now the results
can be found inside the folder iof-tools/RESULTS/.

Once you have all the logs you can parse them with the

script inside the folder logHandlers.
cd logHandlers/parser/

python3 log_parser.py \
-f ../../RESULTS/runl/logs/* —-c -t > logs

With this tool it is possible to average multiple repetitions of
the same experiment (see README . md). Here we only have a
single repetition to plot, and we can do so by running
gnuplot —e "outfile='fab.pdf'; \
inputfile='logs'" \
../../plotsGenerator/Gnuplot/plot_logs.gnuplot

The output is a file showing the number of ASes that has
reached convergence over time, together with the number of
UPDATE messages, similarly to what is shown in Fig. 4.



