
Optimized P2P Streaming for Wireless Distributed
NetworksI

Leonardo Maccari, Nicolò Facchi, Luca Baldesi, Renato Lo Cigno1

Abstract

The future Internet will support pervasive applications and communications
models that require end-nodes cooperation, such as fog computing and machine-
to-machine communications. Among the many applications, also video stream-
ing can be provided with a cooperative and peer-to-peer approach. Cooperative
distribution requires building a distribution overlay on top of the physical un-
derlay topology, and this work proposes an optimized, cross-layer approach to
build this overlay minimizing the impact on the underlay. We design an opti-
mal strategy, which is proven to be NP-complete, and thus not solvable with
a distributed, lightweight protocol. The optimal strategy is relaxed exploiting
the knowledge on the betweenness centrality of the underlay nodes, obtain-
ing two easily implementable solutions applicable to any link-state protocol for
distributed wireless mesh network. We then introduce heuristic improvements
which further optimizes the performance in real network scenarios. Extensive
simulation results support the theoretical findings using three different network
topologies. They show that the relaxed implementations are reasonably close to
the optimal solution, and provide vast gains compared to the traditional random
overlay topology that a peer-to-peer application would build.

Keywords: P2P video streaming, Mesh networks, ad-hoc networks

1. Introduction

Fog computing, machine-to-machine communications, Direct WiFi and LTE,
the same architecture of the Internet of Things, are all indicating that the
future trend of the Internet evolution is toward decentralized systems, where
peer-to-peer communications will play a mayor role, if not for else, to relieve
the backbones and data-centers that are the bottleneck of today centralized

IThis work was partially financed by the European Commission, H2020-ICT-2015 Pro-
gramme, Grant Number 688768 ‘netCommons’ (Network Infrastructure as Commons).

1Department of Information Engineering and Computer Science (DISI), University of
Trento, Italy

Preprint submitted to Journal of Pervasive and Mobile Computing June 23, 2017

architectures. Decentralization for sustainability is probably one of the key
factors that will enable pervasive computing and communications.

Streamlined communications, video but not only, will remain among the
largest bandwidth guzzlers, as they are today, and their efficient support is
of paramount importance for the scalability of the entire system. Currently,
the majority of the Video Service Providers (VSPs) deliver video streams us-
ing unicast traffic and leveraging centralized platforms supported by world-wide
Content Delivery Networks (CDNs). A CDN is a very costly resource that repli-
cates the content as close to the final user as possible. CDNs are approximately
co-located with Internet exchange points and replicate videos based on the es-
timated popularity of the video itself. Users access replicas cached in CDNs, so
that the total load on the VSP infrastructure is limited. This approach does not
fit well the advent of pervasive communications, in which the video streams will
need to be served with minimal delay and on a personal basis. Each user may
have potentially tens of video flows and/or real-time data streams generated by
the smart devices in his house, friends, co-workers, relatives, which will need to
be accessed by different locations. Each stream will be useful to a small num-
ber of people, so the convenience of CDNs and cloud-based caching will lower.
Pervasive computing instead will be based on a distributed mesh of wireless (or
wired) devices, which will form an underlay network over which live video will
be produced, locally served and possibly globally distributed. An already rele-
vant example of this future trend is represented by Community Networks (CN
from now on). CNs are large mesh networks (primarily made of wireless links)
that are flourishing in many different scenarios, from the developing countries
where there is no other connectivity means, to the urban areas of Western cities
where they compete with other network providers. The steep decrease of the
prices of outdoor wireless equipment makes it possible to build wireless mesh
networks with links that can achieve tens of Mbit/s and support CNs made of
hundreds of nodes. Today, CNs made of thousands of devices that cover large
cities or even regions exists, like the Guifi network in Spain or the Freifunk
network in Germany2. These networks already connect in a peer-to-peer (P2P)
way thousands of people, and potentially, tomorrow, hundreds of sub-networks
made of smart devices. These networks are a key element of future pervasive
applications, especially in developing countries or underserved regions.

In this trend, there is room for a renewed interest in P2P systems. Despite
a very large interest from the academia, in the last 15 years P2P applications
could not compete with centralized, cloud-based applications. The key factor
hampering P2P development, specially for video distribution, has been the dif-
ficulty to realize P2P overlays optimized from the point of view of the Internet
Service Providers (ISPs), mostly due to lack of information on the physical net-
work. In mesh networks, the underlay is normally known, since the routing
protocols exports it to each node (as long as a link-state routing protocol is
used), which removes one of the technical barriers that blocked the deployment

2See www.guifi.net, www.frefunk.org

of P2P video streaming on the Internet.
In this paper, we propose a cross-layer optimization scheme to perform live

video streaming (i.e., with a strict deadline on the arrival delay) in mesh net-
works [1]. The optimization minimizes the impact of the streaming overlay on
the underlay network exploiting information on the topology and the routing of
the underlay. The optimization is based on the concept of centrality, which is
also at the base of successful algorithms as Google PageRank [2]. Taking into
account the centrality of peers in the underlay graph, the optimized overlay
topology greatly improves the efficiency of the video distribution and maintains
high performance.

More specifically, our key contributions are as follows:

• We formalize an optimization problem that, given the underlay of the P2P
network and the peers in the overlay, finds the overlay topology whose
cost on the underlay is minimum. We define the cost of the overlay as a
combined metric composed by the load and the fairness imposed by the
overlay on the underlay;

• We prove that the optimal strategy is NP-complete by reducing it to a
quadratic knapsack problem;

• We propose two techniques for relaxing the optimal strategy which relies
on the concept of betweenness centrality of the nodes of the underlay. The
relaxed strategies are applicable to any wireless mesh network, as long as
they use a link-state routing protocol;

• We further improve the performance of the relaxation strategies by in-
troducing a neighborhood pruning heuristic which exploits characteristics
often found in real network scenarios;

• We evaluate the proposed relaxation strategies and pruning heuristics
through extensive simulations that compute the best overlay, according
to each proposed technique, on synthetic network topologies. Simulation
results show that the proposed relaxations and heuristics are reasonably
close to the optimal solution and largely outperform random overlay build-
ing strategies.

This paper builds on a previous work in which we first formalized the op-
timization problem and, introduced the relaxation strategy and evaluated its
results [3]. This paper extends these results with further optimizations to make
the proposal even more efficient in overlays with a realistic topology, i.e. com-
prising many leaf-node in the network graph.

The rest of this paper is organized as follows: in Section 2 we formalize the
optimization problem. The related work on this area is summarized in Section 3.
Section 4 introduces the intersection graph notation we use for defining the
overlay. In Section 5 we describe the strategies used for relaxing the optimization
problem, and the heuristic used for further improving the relaxation strategies
is described in Section 6. We analyze the performance of the proposed strategies
and heuristics in Section 7. Finally, Section 8 concludes the paper.

1 2

34

5

6 7

8

91011

12

13

14

15

16

Figure 1: Example of wireless mesh underlay graph. Hosts are numbered with an
arbitrary ordering. Dashed lines represent the wireless links.

1

p1

2
p2

34

5

p3 6 7

8

910 p411

12

p5

13 p6

14

p7

15

16 p8

Figure 2: Possible overlay graph (black vertexes and edges) over the underlay graph
of Fig. 1.

2. Motivation and Problem Statement

We consider a communication system where the cooperative distribution ex-
ploits a logical topology called the overlay built on top of a meshed routing
network called the underlay . Nodes in the overlay , that from now on we call
peers, do have access to information concerning the underlay , including details
on the topology and quality of its links. This is true for a wireless mesh net-
work using link-state routing protocols, in which every wireless router needs
to know the whole topology of the network to perform routing. For instance,
standard implementations as the OLSRd daemon implementing the Optimized
Link State Routing (OLSR) protocol [4] export the topology with a simple API.
The optimization we propose regards the choices of the edges in the overlay so
that the impact on the underlay is minimized and evenly distributed.

We model the underlay with an undirected graph U(H,L) with vertexes
h ∈ H called hosts or nodes, and edges l ∈ L called links. The size of H is
between a few tens up to a thousand hosts, which corresponds to the realistic
size of a CN [5]. Fig. 1 shows the graph representation of a sample underlay
with 16 hosts.

The peers form an overlay that is also modelled as an undirected graph

Table 1: Summary of the main symbols used through the paper and their meaning.

Peers, Hosts, Links and Virtual Links sets P , H, L, and E
Overlay and underlay graphs U(H,L), O(P,E)
Fairness of O(P,E) over U(H,L) F
Network load of O(P,E) over U(H,L) L
kth undirected overlay edge in P × P ek
Cross-layer overlay edge descriptor of ek ēk
ith overlay peer pi
Degree of pi in the overlay di
Set of the overlay edges in O(P,E) linking pi S′i
Family of all S′i, i = 1, . . . , |P | F ′

O(P,E) as an intersection graph Ω(F ′)
Target function on Ω(F ′) addressing L and F Oc

Binary variable representing of whether ek ∈ E zk
Estimation of link usage in O(P,E) b̄

O(P,E) with vertexes p ∈ P called peers, and edges e ∈ E called virtual or
logical links. Each peer resides in one host only, and it has access to information
pertaining to U , including the association between peers and hosts. Fig. 2
depicts a possible overlay graph on the underlay of Fig. 1.

The goal is to find a viable (meaning that can be implemented as a dis-
tributed system with limited signaling overhead and acceptable computational
overhead) methodology to select virtual links between peers to build O(P,E)
given U(H,L) and P so that the load imposed by the video streaming on the
underlay links is minimized, and links are loaded as fairly as possible. O is dy-
namically created and maintained because both O and U can change frequently,
so the modification of O must be fast and efficient.

2.1. Formal Problem Definition

Tab. 1 reports the main notation we use in the paper. Given an edge e
connecting pi, pj ∈ P , we call D(e) the Dijkstra function returning an (ordered)
set of links in the underlay that form the shortest path from the host where pi
resides and the host where pj resides. For example in Fig. 2 we have:

e = (p1, p4) 7→ D(e) = {(1, 3), (3, 10)}

where (i, j) is the link e connecting hosts i and j. A generic weight w(l) is
assigned to any link in the underlay , so that the load L imposed by O on U is

L =
∑
e∈E

∑
l∈D(e)

w(l)

s(e)
(1)

The s(e) denominator represents a scaling factor for the edge, we detail it
and use it in rest of the paper to express the fact that certain edges can convey

more traffic than others. This representation perfectly fits the routing protocols
that use the ETX metric [6], ETX is the expected average number of frames
sent on the link to correctly deliver one frame, and it is used by OLSR and other
protocols.

Every link l is loaded by a number of virtual links. To measure fairness,
we use Jain’s fairness index on the distribution of the number of logical links
insisting on every l. Let H(l) be the number of logical links loading l:

H(l) = |{e ∈ E : l ∈ D(e)}| (2)

where |·| is the size of a set. The Jain’s fairness is defined as

F =

(∑
l∈LH(l)

)2
|L|
∑

l∈LH(l)2
(3)

Jain’s fairness is maximal if F = 1 and minimal when F = 1
|L| , but we do not

expect that maximal fairness can be reached, as in general there are links in the
underlay that do not support any edge in the overlay .

The contribution of this paper is twofold:

• First we derive a formal framework wherein it is possible to define an
optimization problem that allows finding the topology of O(P,E) given
U(H,L) and P that minimizes a metric composed of L and F . The prob-
lem is NP-complete and we’ll show that it can be reduced to a quadratic
knapsack problem [7];

• Second we propose two relaxations of the optimization in decreasing com-
plexity order and we show, with numerical solutions and with an imple-
mentation in a real P2P streaming platform, that the two relaxations are
close to the global optimum and that they vastly outperform the tra-
ditional P2P overlay building based on selecting uniformly neighboring
peers to build an Erdös-Rényi graph.

The paper focuses on building a mesh overlay and not on how video chunks
are distributed on it. On mesh topologies this latter problem can be tackled
with several different strategies. Even if this is not the focus of the paper,
Sec. 3 briefly refers some relevant works on this topic, justifying our choice for
the distribution strategy we use in Sec. 7 and Sec. 7.1. The assumption we start
from, which becomes a constraint of the optimization problem, is that each peer
should receive exactly one copy of every chunk. In our previous work [3] we also
assumed that each peer contributes to the dissemination serving chunks to other
peers proportionally to its degree in O. This was motivated by the effort to keep
the number of neighbors per peer constant (with a quasi-regular topology), so
that the overall load was fairly distributed. In this paper we introduce a new
model, in which we assume that every peer will generate a constant amount
of traffic, evenly distributed among its neighbors. This way we support non
quasi-regular topologies that match better with the underlay topologies.

In our previous paper we used two evaluation strategies, first we used graph
analysis with Matlab and the Python Networkx graph library, then we vali-
dated the results implementing the strategies on a real P2P video streaming
platform, PeerStreamer [8]. We showed that the first methodology approxi-
mates extremely well the real implementation. In this work we focus on further
insights on the theoretical model and its validation and thus we rely on the first
instrument and we leave the implementation as future work.

3. Related Works

Cooperative video streaming (including P2P) is an established research area.
We focus on unstructured and mesh-based approaches, in which, differently from
structured P2P networks [9], there is no specific structure (like a tree) in the
topology. This approach has been shown to be particularly robust even in
networks with churn (i.e., peers leaving and joining the swarm), and the overlay
topology design is of paramount importance [10].

We do not consider here papers that perform streaming optimization on mesh
networks requiring modifications to the lower layers (they cannot be applied
to existing CNs) or that are not tailored for live video streaming (e.g., using
large chunks that imply several seconds of buffering delay). We also do not
consider techniques (e.g., like cloud-assisted or SDN based), where the role of
the peers is, in one way or another, not fundamental, and we assume that
security [11] and collusion [12] issue need not be solved by the application itself.
The following discussion is focused on two parts: topology management, which
is directly related to our contribution, and chunk/information scheduling, which
justify the choice of the chunk selection strategy in Sec. 7 and Sec. 7.1.

3.1. Topology Management

As we already mentioned, overlay optimization on the Internet is not feasi-
ble due to lack of information on the underlay details; however several efforts
have been done to adapt and improve the overlay topology to some measured
underlay characteristics.

The first approach to mention is the use of “network coordinates” as a means
to compute distances between hosts in a certain space. Several algorithms were
proposed [13, 14, 15], that are designed to work in the heterogeneous environ-
ment of Internet. In all of them the goal is clearly to find a method to infer
details on the underlay (the Internet), a problem that we do not have, as we
take advantage of the available information on the network topology provided
by routing protocols in Wireless Mesh Networks (WMNs). We believe that our
solution can be adapted, albeit not straightforwardly, to situations where the
underlay is not known but approximated with network coordinates.

A second line of research has been concerned with the adaptation of the
overlay based on bandwidth [16] or delay (normally the round trip time be-
tween peers) [17] measures, but also on a mix of the two [18]. The solutions
found in these works are, once again, tailored to the Internet, where delays

can be large (CNs spans a few tens of hundreds of km at most), and bandwidth
asymmetry at the edges impose hard limits to the capacity of peers to contribute
to dissemination.

Extremely interesting and promising for topology management is the adop-
tion of centrality metrics as means to better understand the topology charac-
teristics of a network graph as it emerges from the routing protocol. Centrality
metrics in graphs have been used in social science since the 70s to identify the
most influential elements in social networks. Quite surprisingly, they were not
applied to multi-hop networks up to recent times [2]. Centrality metrics can be
used to enhance network monitoring and routing [19], as well as the resilience of
routing algorithms to networks failures [20] intrusion detection and firewalling
[21, 22], and topology control [23]. There are several metrics based on different
centrality “concepts”. In this paper we use the betweenness centrality (see [22]
for a definition tailored to our problem) to relax the optimization problem as it
is strictly related to shortest path routing.

3.2. Chunk Scheduling

In a mesh-based overlay the problem of chunk scheduling is the selection of
the neighbors to send/receive information to/from while contextually choosing
the right information (chunk) to send/retrieve. This problem has been exten-
sively studied [24, 25, 26], and in some specific contexts with restrictive assump-
tions, the existence of an optimal scheduling strategy has been proven [27].

Those works show that an efficient and robust chunk scheduling technique
that works well in most environments consists in selecting a neighbor with a
random (possibly weighted) strategy, and push the most recent chunk that is
still missing at the receiving peer (Latest Useful Chunk).

4. Overlay Model

The links in U are bidirectional and assumed quasi-symmetric: the most
common routing protocols take care of excluding unidirectional or highly asym-
metric links. Thus both O and U are undirected, and the maximum number of

edges they can have is mO = |P |2−|P |
2 and mU = |H|2−|H|

2 respectively.
Let r ∈ 1 . . .mU be an arbitrary ordering on the links; r is also a mapping

from the two hosts hi and hj that are the endpoints of the link: r(hi, hj).
Similarly we define an ordering k ∈ 1 . . .mO on the edges of O, and k is a
mapping k(pi, pj).

Every link lr is represented by a binary array of size mU with the rth element
set to one and all other elements set to zero (we use the bar sign to refer to the
array representation of a link):

l̄r = (0, . . . , 0, 1, 0, . . . , 0)

e3,e4,
e7

S′1

e8,e11,
e12

S′2
e8,e14,
e15

S′3

e3,e14,
e22

S′4

e4,e15

S′5

e11

S′6

e12,e28

S′7

e7,e22,
e28

S′8

Figure 3: Example of overlay intersection graph. Elements ek are the cross-layer
overlay edge descriptors between the nodes.

Equivalently each virtual link ek is represented by the sum of the link arrays
in the corresponding shortest path:

ēk =
∑

lr∈ D(ek)

l̄r

We call ēk the cross-layer overlay edge descriptor, since it bonds the overlay
to the underlay. Link weights w(l) in U can be easily taken into account: let
W ∈ RmU×mU be a diagonal matrix such that Wr,r = w(lr), then ēkW is the
weighted representation of the overlay edge.

4.1. Overlay re-definition as an intersection graph

Given all ēk for a set of peers P , we can take advantage from a transfor-
mation into the intersection graph space (see [28] for the complete definitions
and properties of intersection graphs) in order to formulate the optimization
problem of overlay construction.

Let S be a set and F = {S1, . . . , Sp} a nonempty family of distinct nonempty
subsets of S whose union is S. The intersection graph of F is denoted Ω(F),
with Si and Sj adjacent whenever i 6= j and Si ∩Sj 6= ∅. It is easily shown that
if O(P,E) is a full mesh then it is isomorphic with the intersection graph space
Ω(F) where

Si = {ēk(pi,pj),∀pj ∈ P} ∀pi ∈ P ; S = ∪|P |i=1Si (4)

and each Si is the set of all the possible virtual links built on shortest paths
from peer pi to all other peers. As a consequence, given an underlay U(H,L)
and a set of peers P , any overlay O(P,E) over U(H,L) can be defined as the
intersection graph Ω(F ′) with F ′ = {S′1, ..., S′|P |} where S′i ⊆ Si ∀Si ∈ F . If

each peer chooses only a subset S′i ⊆ Si and activates only a subset of possible

edges, then the resulting overlay is isomorphic with some Ω(F ′). The overlay
depicted in Fig. 2 is isomorphic with the intersection graph shown in Fig. 3:
every S′i in Fig. 3 corresponds to a peer pi in Fig. 2.

4.2. Performance Measures

We can now redefine in terms of intersection graphs also the performance
metrics expressed by Eq. (1) and Eq. (3) in Sec. 2:

L = OI(Ω(F ′)) = ~1 · L(F ′); L(F ′) =
∑

ēk∈S′

ēk
W

s(ek)
(5)

where L(F ′) is the array that associates the traffic potentially produced by the
overlay to each link in the underlay, ~1 is the array of size mU made of all ones,
and · is the dot product. Given the assumption on the traffic generated by every
peer that we made in the end of Sec. 2.1 we can set s(ek) = (didj)/(di + dj),
where di, dj are the degrees of the peers that constitute the endpoints of ek. This
formulation of s(ek) takes into consideration the distribution of the unitary load
generated by a peer on its neighbors. If all the peers have the same degree s(ek)
is constant and can be omitted from the formulation. Else, it takes into account
that a peer with many neighbors will load each of its edges less than a peer with
few neighbors.

Eq. (5) redefines Eq. (1) through operations done in the intersection graph
space. Similarly we re-define the Jain’s fairness index as

F = Of (Ω(F ′)) =
(
∑mU

k=1 L(F ′)i)
2

mU (
∑mU

k=1 L(F ′)2
i)

(6)

5. Overlay Optimization

For the sake of simplicity, but without loss of generality, we take as weighting
matrix W the identity matrix. In this section we consider regular overlays with
constant degree, so we omit s(ek). We will re-introduce it in Sec. 6 where
we show that regular overlays are necessarily suboptimal over certain realistic
underlays. Let’s say we want to build an overlay O determined by a choice
of F ′ = {S′1, ..., S′|P |} that minimizes the load on the underlying edges and
guarantees a fairness as close as possible to 1. We have to choose the sets

S′i ⊆ Si with S′ = ∪|P |i=1S
′
i such that both OI and Of are minimal, which is

a multi-objective combinatorial optimization problem. The problem allows the
definition of a combined metric Oc that expresses the cost of the overlay. Since
each array ēk ∈ S′ corresponds to a set of links the cost of the overlay is defined
as:

Oc(Ω(F ′)) =

∣∣∣∣∣∣
∣∣∣∣∣∣
|S′|∑
k=1

ēk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

The creation of an efficient overlay Ω(F ′) can now be formulated as a mini-
mization problem as follows. Select F ′ in order to minimize the expression:

arg min
z

∣∣∣∣∣∣
∣∣∣∣∣∣
|S|∑
k=1

zkēk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(7)

where

zk =

{
1 if ēk ∈ S′

0 otherwise

In order to avoid a trivial solution we impose on each peer a minimum
node degree d > log2(|P |), which also guarantees that the resulting overlay is
connected with high probability3.

This problem can be rephrased as: find the overlay graph Ω(F ′) with min-
imum degree d defined by F ′ = {S′1, ..., S′|P |} so that the norm of L(F ′) is
minimized subject to the following constraint(∑

ēk∈Si

zk

)
≥ d; ∀i = 1...|E| (8)

In Eq. (8) we did a small abuse of notation to improve the readability: the sum
spans all the edges ek ∈ Si, but it is indeed a sum over k(pi, pj) to correctly
identify the indication function zk. We will use this notation also in several
other equations.

If, instead of the norm, in Eq. (7) we use the sum of the elements, this would
simply minimize OI . The norm instead prefers solutions that are close to the
minimum OI and, among two potential solutions with the same OI , it prefers
the one in which the weights of L(F ′) are more fairly distributed.

This problem is a zero-one quadratic programming problem [29], similar to a
quadratic knapsack problem [7]. In this kind of problems one wants to minimize
the value of an expression cTx + xTQx where x = {0, 1}n is an array of binary
variables, c ∈ Rn and Q is a symmetric matrix of size n× n. The minimization
is subject to a constraint of the kind hTx + xTGx > g where h is an array of
size n, G a symmetric matrix of size n × n and g some real value. If we call
Ā the matrix made of columns corresponding to the arrays ēk and z the array
made of zk elements then:

arg min
z

∣∣∣∣∣∣
∣∣∣∣∣∣
|S|∑
k=1

zkēk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= arg min
z

zT ĀT Āz

Our problem is thus a zero-one quadratic problem with Q = ĀT Ā, G and c
made of all zeros, h = ~1. This family of problems is known to be NP-hard, but
there are algorithms in literature that make them tractable up to a certain size

3Using simple P2P techniques the probability actually converges to 1 [18].

using branch-and-bound techniques. Still, when |S| grows beyond a few hun-
dreds the problem can not be solved on commodity hardware. |S| corresponds
to the number of possible edges in the overlay mO, so it scales quadratically
with the number of peers, which quickly makes the problem intractable.

5.1. Betweenness Centrality-based Relaxation

We need to find a relaxation in which each pj can solve a portion of the
problem, making some assumptions on the behaviour of the other peers. This
corresponds to a scenario in which every peer is aware of the other peers, in-
dependently selects its own neighbors, and it communicates them its choice.
This is the way P2P streaming protocols based on peer sampling typically work
(including the already mentioned PeerStreamer).

Let us first separate the contribution to the overall cost of the edges chosen
by pj and all the other peers in Eq. (7)∣∣∣∣∣∣

∣∣∣∣∣∣
|S|∑
k=1

zkēk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=
1

2

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
Si∈F,Si 6=Sj

∑
ēk∈Si

zkēk +
∑

ēk∈Sj

zkēk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(9)

The value 1
2 comes from the observation that when we separately count each

link, every link is counted twice in the sum. Let’s call bj the vector representing
the choices of the peers in P \ {pj}:∣∣∣∣∣∣

∣∣∣∣∣∣
|S|∑
k=1

zkēk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=
1

2

∣∣∣∣∣∣
∣∣∣∣∣∣bj +

∑
ēk∈Sj

zkēk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(10)

and we can say that:

arg min
z

∣∣∣∣∣∣
∣∣∣∣∣∣
|S|∑
k=1

zkēk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= arg min
z

∣∣∣∣∣∣
∣∣∣∣∣∣bj +

∑
ēk∈Sj

zkēk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(11)

Our goal is now to find a relaxation of the problem in which every peer
chooses its own neighborhood making some assumptions about bj , which repre-
sents the choice that the other peers pi 6= pj do. We need to find a reasonable
approximation b̄ ' bj that node pj can use in (11).

Let us now introduce a notion that helps us in this task. In graph theory,
the notion of betweenness centrality is a property of the edges (or of the nodes)
of a graph defined as the fraction of the total number of shortest paths that
passes through that edge (or node). It is a metric used to identify the edges (or
nodes) that are more involved in multi-hop interactions between the vertexes of
a graph, so for some applications they can be considered more important than
the others.

We call b =
∑

ēk∈S ēk the summation of all the cross-layer overlay edge
descriptors of the complete overlay. Recall that ēk corresponds to a shortest
path in U between two hosts on which a peer resides, thus, each element of b

corresponds to a link in U and expresses the number of shortest paths in the
set S that insist on that link.

Consider the limit case in which every host in the underlay contains a peer
(|P | = |H|) and let b∗ be the value of b normalized to the total number of
shortest paths:

b∗ = b
2

|P |2−|P |
b∗ is exactly the vector corresponding to the betweenness centrality of each link
in L.

If |H| > |P |, b∗ is an approximation of the real array of centralities. This
is a known fact that is used to approximate centrality in large networks: if the
number of nodes is too large to compute all the shortest paths, centrality can be
estimated using a subset of the paths chosen from a random set of nodes [30]. A
key fact is that the convergence to a solution close to the real one is pretty fast in
power-law graphs, that are extremely frequent in real communication networks,
and also in some large CNs [31]. Thus, even if pj ignores bj , a reasonable
assumption is that whatever the choice of each other peer is, the elements of
bj (that represent the sum of all choices) have a shape similar to the centrality
expressed by the normalized value b∗. This, on power-law underlays is true even
for values of |P | one order of magnitude smaller than |H|.

Given that we impose each peer to have (at least) d neighbors, the number

of edges in E will be approximately d|P |
2 and finally the best approximation for

bj turns to be

b̄ = b∗(|P |−1)
d

2
= b

d(|P |−1)

|P |2−|P |
= b

d

|P |
=

d
∑|S|

k=1 ēk
|P |

(12)

The complexity of Eq. (12) is polynomial with P [30], that allows the computa-
tions of its solution for overlays of hundreds of peers using commodity hardware.
Moreover in communication networks, that are sparse graph, betweenness can
be computed quickly using heuristics [32], which explains why we introduced
this formulation based on centrality. Thus, replacing bj with b̄ in (11) each peer
pj resolves the following optimization problem:

arg min
z

∣∣∣∣∣∣
∣∣∣∣∣∣b̄ +

∑
ēk∈Sj

zkēk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(13)

conditioned to:
∑

ēk∈Sj

zk ≥ d (14)

The formulation of (13) is another zero-one quadratic minimization problem,
but the dimension of the problem is now bounded by |P |< |S| (the maximum
number of neighbors for pj), and can be effectively solved up to hundreds of
peers. In the rest of the paper we will use the branch-and-bound solver given
by the YALMLIP library [33] which solves the problem (13) for a network of
100 nodes in few seconds.

If still the dimension of the problem or the available hardware do not allow
the solution of the optimization, we can apply a greedy search algorithm, ranking
each possible ēk for its weight and choosing the ones that minimize the sum.
This corresponds to relax (13) to:

arg min
z

∑
ēk∈Sj

zk
∣∣∣∣b̄ + ēk

∣∣∣∣
2

(15)

conditioned to:
∑

ēk∈Sj

zk ≥ d (16)

which of course captures only a part of the original problem but greatly simplifies
the computation. Our results show that the solutions generated by (7), (13) and
(15) in the case of realistic network topologies are reasonably close one to each
other.

It is worth nothing that if we set b̄ = ~0 in Eq. (15), then the l-2 norm yields
the same order of the l-1 norm. In practice each pj chooses the neighbors that
are closer in terms of hops in the underlay. The b̄ terms instead introduce a
bias in the choice towards the neighbors connected through links that are less
overloaded and introduce a higher fairness. In the comparison we include also
a strategy in which b̄ = ~0 because this strategy can be used also in absence
of full information from the underlay topology, since the distance from another
peer can be measured with probing tool (like the traceroute application) or
can be inferred by the time-to-live field in IP packets. Results show that the
performance of this simple ranking function is sensibly lower compared to the
proposed strategies.

Tab. 2 summarizes the different optimization strategies and labels them with
the names we use.

Name Symbol Formula

Global Optimization Go arg minz ‖
∑|S|

k=1 zkēk ‖2
Local Optimization Lo (Lop) arg minz ‖ b̄ +

∑|Sj |
k=1 zkēk ‖2

Local Equalized Ranking Er (Erp) arg minz

∑|Sj |
k=1 zk ‖ b̄ + ēk ‖2

Local Ranking Lr (Lrp) arg minz

∑|Sj |
k=1 zk ‖ ēk ‖2

Table 2: A summary of the optimization functions. Symbols between parentheses iden-
tify the optimization strategies that use the neighborhood pruning operation discussed
in Sec. 6

6. Neighborhood Pruning

So far we considered only a sort of “blind” optimization, that can be largely
improved in some specific, but not unrealistic, situations. Consider for instance

the case of a peer pj that is placed on a leaf node of the underlay topology,
and assume that its only underlay neighbor also contains a peer pi. Does it
make sense for pj to choose more than one neighbor in the overlay? Under a
performance point of view it makes no sense, all the traffic that pj receives will
pass through pi. Under a robustness point of view it still makes sense, because
pi may suddenly leave the overlay and pj would be logically disconnected. Yet
it is intuitive to understand that it is convenient to reduce the neighborhood
size of pi, compared with another peer that resides in the center of the topology.

In general we can state that, regardless of the underlay topology, when pj
selects its neighbors, if there exists a peer py that lies on the shortest path
between pj and another pi, then py should be preferred to pi. In general, any
node pj should prefer as neighbors the peers that are the first encountered along
any shortest path route, because otherwise the data packets will “jump” some
peer that are in the path to their destination, which is a waste of resources.
This situation is not frequent if underlays are random graphs and if the number
of peers is small compared to the number of underlay nodes, but it can be
frequent, or even dominant, in realistic topologies with many leaf nodes and
when the number of peers becomes comparable with the number of nodes in the
underlay.

Based on the consideration above, we can re-define the objective of building
an optimal overlay limiting the neighborhood selection to peers first encountered
on shortest path routes. We call this operation (of limiting the selection) neigh-
borhood pruning because the search for a neighbor along a branch is stopped
immediately at the first peer encountered, and thus the branch is pruned.

The pseudocode of the steps executed by a generic peer pj for pruning the
neighborhood are summarized in Algorithm 1 and detailed next.

1: P tmp = {pi|pi ∈ P, i 6= j}, P j = ∅
2: repeat
3: py ← minpi∈P tmp |D(ēk(pj ,pi))|
4: P j = P j ∪ {py}, P tmp = P tmp \ {py}
5: P tmp = P tmp \ {pi|pi ∈ P tmp, py ∈ l, l ∈ D(ēk(pj ,pi))}
6: until P tmp 6= ∅
7: Sj = {ēk(pj ,py)|py ∈ P j}

Algorithm 1: Neighbood pruning algorithm for peer pj

In the initialization step (line 1) two sets are created: P tmp is initialized
to P \ {pj} and is used to hold the available peers; instead, P j , initialized
as an empty set, is used for holding the possible candidate neighbors of pj .
When a peer py is selected as a candidate neighbor and inserted into P j , all the
other peers pi still available and which include py in their shortest path from
pj are removed from P tmp and not considered as possible candidate neighbors
anymore. This is what happens in the main loop of the algorithm (lines 2–6):
at the beginning of every iteration the peer py, which is the closest to pj among
all the peers still available in P tmp (line 3), is inserted in P j and removed from

P tmp (line 4). Finally, any peer pi which includes py in its shortest path from
pj is removed from P tmp (line 5). The loop stops when there are no more peers
available (P tmp = ∅). After the loop, the algorithm builds the set Sj used by the
optimization strategies, which includes only the virtual links ēk that connect pj
to the peers py selected as candiate neighbors (line 7).

The computational complexity of the neighborhood pruning algorithm is
linear in |P | if we assume that the shortest paths computed by the Dijkstra
functions are already available and that pj has enough memory to maintain
a data structure for easily connecting every peer pi to the shortest paths that
include pi. If instead only the shortest paths computed by Dijkstra are available,
the pruning algorithm is O(|P |D), where D is the diameter of the network. In
any case, the neighborhood pruning algorithm can be easily integrated into the
Dijkstra functions which could be modified for returning only the shortest paths
originating from pj and terminating to the peers in Sj . Finally, note that when
|Sj |≤ d all the peers in P j are automatically selected as neigbors by pj without
the need of executing any optimization. This means that when the number
of peers becomes comparable with the number of nodes in the underlay the
computational cost of the optimization strategy becomes almost negligible for
most of the peers.

The neighborhood pruning operation can be easily applied to all the local
optimization strategies discussed in Sec. 5 with the difference that the scaling
factor s(ek) introduced in Eq. (5) cannot be ignored, because every peer now
potentially has a different degree. In particular, for computing the final per-
formance metrics of the overlay, we set s(ek) = (didj)/(di + dj), where di, dj ,
computed with the knowledge of the local solutions of all the peers, are the
real degrees of the endpoint peers of ek. Instead, to compute the solution of
the local optimization strategies, for each peer pj , we set s(ek) = dj , where
dj = min(d, |Sj |). In this way the computational complexity is reduced be-
cause pj does not have to compute the pruned neighborhood of all the possible
candidate neighbors in Sj .

7. Results Evaluation

We evaluated the proposed strategies implementing them in a simulator
that computes the best overlay according to each strategy on synthetic net-
work topologies. Simulations have been performed using the Networkx library,
a powerful library for the generation and analysis of graphs realized in the
Python language. Given an underlay topology we have implemented the pro-
posed strategies and for each one we compared the measures of load and fairness
of the generated overlay graph. The global and the local optimization problems
are solved with the YAMLIP library, while the others have been implemented
directly in Python. We used three different kinds of underlay graphs, the well
known Erdős-Rényi (ER) and the Barabási-Albert (BA) model with preferen-
tial attachment and a model from Cerdá-Alabern (CE) [31] derived from the
analysis of a number of real mesh networks. The CE algorithm uses a prefer-
ential attachment algorithm to create a core of interconnected hosts, and then

#Hosts
100 200 300 400 500

L
o

a
d

200

300

400

500

600

700
E

r
G

o
L

o
L

r Random

(a) Load for 20 peers

#Hosts
100 200 300 400 500

F
a
ir
n
e
s
s

0.5

0.6

0.7

0.8

0.9

1
E

r
G

o
L

o
L

r Random

(b) Fairness for 20 peers

Figure 4: Load and fairness for an ER underlay from 100 to 500 hosts and 20 peers

adds leaf hosts using a Gamma distribution. Finally we take advantage from
real-life WCN topologies, taken from the Ninux and the FFWien4 networks [34]
respectively made of 131 and 236 nodes.

7.1. Results

Fig. 4 reports the comparison of all the described strategies in a small (20
peers) scenario, increasing the size of an ER underlay. With 20 peers we are able
to solve all the optimization problems, so this is a good benchmark to outline
the differences between each strategy. The optimized results vastly outperform
the random strategy, which is not surprising since they use available information
on the underlay. What is most significant is that even the strategies that are
less costly to compute, namely Lo and Er achieve results that are close to the
optimal strategy Go especially in terms of fairness.

This means that even if the quadratic optimization remains NP, in the anal-
ysed graphs the number of available disjoint paths between two peers is low and
the space of the solutions of the optimization problem is small enough for all

4See http://ninux.org and http://www.funkfeuer.at/

#Hosts
100 150 200 250 300 350 400 450 500

L
o
a
d

100

200

300

400

500

600
Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(a) Load
#Hosts

100 150 200 250 300 350 400 450 500

F
a
ir
n
e
s
s

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(b) Fairness

#Hosts
100 200 300 400 500

M
e
a
n
 c

o
n
n
e
c
ti
v
it
y

5

10

15

Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(c) Mean connectivity
#Hosts

100 200 300 400 500
L
o
a
d

0

5

10

15

20

25

30

35
Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(d) Maximum link load

Figure 5: CE underlay, 100 peers, from 100 to 500 hosts

the optimization strategies to be very close. More results on this analysis can
be found in our previous publication [1].

We performed experiments with overlay size up to 100 peers, since there is
no qualitative difference in the results we report only the results for 100 peers.
With that size we are not able to use the Go strategy, so the comparison is done
only with the remaining strategies and their “pruned” version.

Fig. 5 reports the results on a 100 peers overlay computed on CE underlays
and shows two main results. The first is that the Lo and Er strategies are very
close and achieve a substantial improvement compared to the random strategy,
which confirms the effectiveness of our approach. The Lr strategy produces
results that are closer to the random strategy. This is again an interesting
result because it shows that the naive neighbor choice based only on distance
(Lr) produces a higher load than one can have if some long edges are added.
Intuitively, choosing the peers that are the closest ones in the underlay seems
the most reasonable solution. Instead, the shortest path between two peers
computed on the underlay can be shorter than the sum of the shortest paths
that pass through some other peers. The betweenness-based strategies try to
avoid central peers which in some cases leads to the introduction of longer
edges. These long edges may be network-wise more efficient than choosing
neighbors only among the closest peers. The second important result is that
every approach is substantially improved by the “pruning” strategy in terms
of load on the underlay. This confirms that pruning neighbors is effective in
excluding potential neighbors that are inherently inefficient.

If we look at the fairness, results are similar. Fig. 5b shows that Lo produces
the highest fairness followed by Er. They both fall in the [0.8, 0.9] range, which is

#Hosts
100 150 200 250 300 350 400 450 500

L
o
a
d

100

150

200

250

300

350
Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(a) Load
#Hosts

100 150 200 250 300 350 400 450 500

F
a
ir
n
e
s
s

0.4

0.5

0.6

0.7

0.8

0.9

1
Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(b) Fairness

#Hosts
100 200 300 400 500

M
e
a
n
 c

o
n
n
e
c
ti
v
it
y

2

4

6

8

10

12

14

16 Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(c) Mean connectivity
#Hosts

100 200 300 400 500
L
o
a
d

0

2

4

6

8

10 Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(d) Maximum link load

Figure 6: ER underlay, 100 peers, from 100 to 500 hosts

extremely high. Random placement performs better than Lr. This confirms that
the choice of the closest peer is not a good strategy because it stresses the peers
(and the corresponding underlay hosts and links) that are more central. The
pruned strategies lightly decrease the fairness due to a similar effect: pruning
removes from Sj the peers that are further away, thus it concentrates the choice
on the closest peers. In this case the negative effect is very small. To further
investigate this issue Fig. 5d shows the maximum load on any underlay link
averaged on all the runs. The maximum load is reduced by pruning, so the load
distribution, even if slightly less fair is more sustainable. Note also that, for
an increasing number of hosts in the underlay, the maximum link load tends
to keep a constant value or even decrease. This behavior is expected, in fact,
when the number of hosts increases, the load of the underlay is distributed over
a bigger number of links, thus reducing the maximum link load.

Finally in Fig. 5c we report the mean connectivity of the overlay computed
by each strategy. The non-pruned strategies maintain a certain connectivity
independently of the growth of the underlay. The pruned strategies instead in-
crease the average connectivity with the growth of the underlay. To understand
this effect, consider the point with 100 peers and 100 hosts. In this case the
overlay corresponds to the underlay. The pruned strategies converge to almost
the same average, because each peer can do nothing better than choosing as
neighbors in the overlay the physical neighbors in the underlay. As the under-
lay grows the pruning algorithm leaves to each peer more neighbor candidates
and thus, the average degree increases.

Fig. 6 and Fig. 7 report the same set of results computed on ER and BA
topologies. The comparison among the non-pruned strategies confirms the same

#Hosts
100 150 200 250 300 350 400 450 500

L
o
a
d

100

150

200

250

300 Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(a) Load
#Hosts

100 150 200 250 300 350 400 450 500

F
a
ir
n
e
s
s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(b) Fairness

#Hosts
100 200 300 400 500

M
e
a
n
 c

o
n
n
e
c
ti
v
it
y

2

4

6

8

10

12

14

16 Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(c) Mean connectivity
#Hosts

100 200 300 400 500
L
o
a
d

0

5

10

15

Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(d) Maximum link load

Figure 7: BA underlay, 100 peers, from 100 to 500 hosts

#Hosts
100 110 120 130 140 150 160 170 180 190 200

L
o
a
d

100

120

140

160

180

E
r

E
rp

L
o

L
op

(a) Load for ER graphs
#Hosts

100 110 120 130 140 150 160 170 180 190 200

L
o
a
d

100

120

140

160

180

E
r

E
rp

L
o

L
op

(b) Load for BA graphs

Figure 8: ER and BA underlay, 100 peers, from 100 to 200 hosts

results we obtained in the CE topologies, the local optimization and the equal-
ized ranking strongly improves both the random and the local ranking. This
again confirms the effectiveness of our relaxation strategies. The effect of prun-
ing is instead reduced. This is natural if we consider that by construction ER
and BA underlays do not have leaf nodes, so the pruning effect is less visible.
Indeed, even in this case, for the most dense scenarios there is a positive effect
of pruning, which can be noticed in Fig. 8 where we report the load generated
by the two heuristic strategies, with and without pruning, in the range between
100 and 200 peers. The figure shows that in dense overlays the improvement of
pruning is still significant. As a general remark it also shows that it is extremely
hard to optimize any distributed strategy for a generic network topology, and
the choice of realistic topologies (as we do with the CA topologies and with the
next section) is essential to achieve sound results.

#Peers
30 40 50 60 70 80 90 100

L
o
a
d

0

100

200

300

400

500

600 Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(a) Load
#Peers

30 40 50 60 70 80 90 100

F
a
ir
n
e
s
s

0.5

0.6

0.7

0.8

0.9

Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(b) Fairness

#Peers
30 40 50 60 70 80 90 100

M
e
a
n
 c

o
n
n
e
c
ti
v
it
y

0

2

4

6

8

10

12

14

Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(c) Mean connectivity
#Peers

30 40 50 60 70 80 90 100
L
o
a
d

0

5

10

15

20

25
Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(d) Maximum link load

Figure 9: Ninux network, from 30 to 100 peers

7.2. Results on Real Topologies

Figs. 9 and 10 report the results computed on two topologies derived from
two real networks, the ninux and FunkFeuer networks respectively made of 131
and 236 nodes. In this case, given the fixed underlay, we produced the results
for an increasing size of the overlay which goes from a minimum of 30 peers to
a maximum of 100 peers. The results are perfectly compatible with the ones
obtained on the CE graphs. In real networks in which the number of leaf nodes
is substantial, the pruned algorithms strongly improve the performance of the
non pruned algorithms. As already shown for the CE underaly scenario, the
improvement given by the “pruning” strategies in term of load on the underlay
increases when the peers density increases (Figs. 9a and 10a) which confirms that
the “pruning” is effective in excluding inefficient neighbors also in real network
toplogies. This observation is confirmed also by the results reported in Figs. 9c
and 10c that show how the mean connectivity decreases when the number of
peers in the overlay becomes closer to the number of host in the underlay. In
fact, in the scenario with 100 peers, most of them can do nothing better than
choosing as neighbors in the overlay the physical neighbors in the underlay.
This is not true for the case with 30 peers where the mean connectivity of the
“pruning” strategies is more similar to the one obtained by the non-pruned
strategies. Also with real network topologies the Erp and Lop strategies lightly
decreases the fairness if compared with the corresponding non-pruned strategies,
but the negative effect is very small and negligible from a practical point of view.

#Peers
30 40 50 60 70 80 90 100

L
o
a
d

100

200

300

400

500

600
Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(a) Load
#Peers

30 40 50 60 70 80 90 100

F
a
ir
n
e
s
s

0.3

0.4

0.5

0.6

0.7

0.8

Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(b) Fairness

#Peers
30 40 50 60 70 80 90 100

M
e
a
n
 c

o
n
n
e
c
ti
v
it
y

4

6

8

10

12

14

Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(c) Mean connectivity
#Peers

30 40 50 60 70 80 90 100
L
o
a
d

5

10

15

20
Random

Random
p

L
r

L
rp

E
r

E
rp

L
o

L
op

(d) Maximum link load

Figure 10: FFW network, from 30 to 100 peers

8. Conclusions and Future Work

Video streaming is one of the most popular Internet applications, thus
achieving an efficient video streaming in a Wireless Mesh Network (WMN)
with a small footprint on the precious wireless resources is of paramount im-
portance. Starting from the observation that usually WMNs allow symmetrical
bandwidth and a complete knowledge of the topology, we designed a novel strat-
egy for cooperative (live) video streaming which can be successfully deployed
on any multi-hop network that provides to the network nodes a complete view
of the topology. Exploiting a novel mapping of the problem onto intersection
graphs, we formulated an optimization problem to build an overlay that not
only reduces the total load on the underlay, but also increases the fairness in
the distribution of the load on the underlay links. Given the NP-completeness
of the problem in its general formulation, we proposed two relaxations based
on betweenness centrality. Simulation based results show that these strategies
largely outperform random overlay building techniques. Even better perfor-
mances can be obtained if the topological properties of real networks are taken
into consideration. Thus, we proposed a neighbour pruning strategy that takes
into account the different topological positions of nodes in real networks, that
are very different from purely random graphs.

In our future works we will extend our proposal to networks and applications
with a larger number of hosts and peers. Currently, in our simulations, we fo-
cused on underlays made of hundreds of hosts, so that the local solutions can be
easily computed on low-power devices. However, Recently introduced heuristics
[35] make the computation of centrality metrics fast enough even on topologies
made of thousands of nodes. We also plan to extend our research towards a

more experimental approach. The first step in this direction will be to evaluate
the proposed relaxation strategies and pruning heuristics in an emulated envi-
ronment (e.g., Mininet). This would allow us to evaluate our work in large-size
networks and with real video streaming application (e.g., PeerStreamer). Then,
for small/middle-size networks we also plan to test our algorithm through ex-
periments in real testbeds. This would allow us to evaluate how our algorithms
behaves on real embedded devices with constrained resources. Furthermore, we
will study the way to approximate the centrality of nodes even when the net-
work uses a routing protocol that does not export all the network topology but
just an approximation of it, such as a distance-vector protocol. Finally, we are
also interested in evaluate how the proposed strategies can be applied to differ-
ent application areas that face similar problems and would benefit from a more
efficient use of the underlay (e.g., surveillance in urban sensor networks [36]).

References

[1] L. Baldesi, L. Maccari, R. Lo Cigno, Improving P2P streaming in Wireless
Community Networks, Computer Networks 93, Part 2 (2015) 389–403.

[2] D. Katsaros, N. Dimokas, L. Tassiulas, Social network analysis concepts
in the design of wireless ad hoc network protocols, IEEE Network 24 (6)
(2010) 23–29.

[3] L. Baldesi, L. Maccari, R. Lo Cigno, Optimized cooperative streaming in
wireless mesh networks, in: 15th IFIP Networking Conference NETWORK-
ING, Vienna, AT, May 2016, pp. 350–358.

[4] T. Clausen, P. Jaquet, Optimized link state routing protocol (OLSR), RFC
3626 (Oct. 2003).

[5] B. Braem, C. Blondia, C. Barz, H. Rogge, F. Freitag, L. Navarro, J. Boni-
cioli, S. Papathanasiou, P. Escrich, R. Baig Viñas, A. L. Kaplan, A. Neu-
mann, I. Vilata i Balaguer, B. Tatum, M. Matson, A Case for Research
with and on Community Networks, ACM SIGCOMM Comput. Commun.
Rev. 43 (3) (2013) 68–73.

[6] M. E. M. Campista, P. M. Esposito, I. M. Moraes, L. H. M. k. Costa,
O. C. M. b. Duarte, D. G. Passos, C. V. N. D. Albuquerque, D. C. M.
Saade, M. G. Rubinstein, Routing metrics and protocols for wireless mesh
networks, IEEE Network 22 (1) (2008) 6–12.

[7] D. Pisinger, The quadratic knapsack problem–a survey, Discrete Applied
Mathematics, Elsevier 155 (5) (2007) 623–648.

[8] R. Birke, E. Leonardi, M. Mellia, A. Bakay, T. Szemethy, C. Kiraly, R. L.
Cigno, F. Mathieu, L. Muscariello, S. Niccolini, J. Seedorf, G. Tropea,
Architecture of a Network-Aware P2P-TV Application: The NAPA-WINE
Approach, IEEE Communications Magazine 49 (2011) 154–163.

[9] N. Shah, D. Qian, An Efficient Unstructured P2P Overlay over MANET
Using Underlying Proactive Routing, in: Seventh International Conference
on Mobile Ad-hoc and Sensor Networks, 2011, pp. 248–255.

[10] D. Carra, R. Lo Cigno, E. W. Biersack, Graph Based Analysis of Mesh
Overlay Streaming Systems, IEEE Jou. on Selected Areas in Communica-
tions 25 (9) (Dec. 2007) 1667–1677.

[11] G. Gheorghe, A. Montresor, R. Lo Cigno, Security and Privacy Issues in
P2P Streaming Systems: A Survey, Springer Peer-to-Peer Networking and
Applications 4 (Apr. 2011) 75–91.

[12] G. Ciccarelli, R. Lo Cigno, Collusion in Peer-to-Peer Systems, Elsevier
Computer Networks 55 (15) (Oct. 2011) 3517–3532.

[13] T. E. Ng, H. Zhang, Predicting internet network distance with coordinates-
based approaches, in: IEEE INFOCOM, New York, NY, USA, June 2002,
pp. 170–179.

[14] F. Dabek, R. Cox, F. Kaashoek, R. Morris, Vivaldi: A decentralized net-
work coordinate system, ACM SIGCOMM Computer Communication Re-
view 34 (4) (2004) 15–26.

[15] Y. Chen, X. Wang, C. Shi, E. K. Lua, X. Fu, B. Deng, X. Li, Phoenix: A
weight-based network coordinate system using matrix factorization, Net-
work and Service Management, IEEE Trans. on 8 (4) (2011) 334–347.

[16] R. Fortuna, E. Leonardi, M. Mellia, M. Meo, S. Traverso, QoE in Pull Based
P2P-TV Systems: Overlay Topology Design Tradeoffs, in: 10th IEEE Int.
Conf. on Peer-to-Peer Computing (P2P-10), Delft, NL, Aug. 2010, pp. 1–
10.

[17] A. Russo, R. Lo Cigno, Delay-Aware Push/Pull Protocols for Live Video
Streaming in P2P Systems, in: IEEE ICC, Cape Town, ZA, May 2010, pp.
1–5.

[18] S. Traverso, L. Abeni, R. Birke, C. Kiraly, E. Leonardi, R. L. Cigno,
M. Mellia, Neighborhood Filtering Strategies for Overlay Construction
in P2P-TV Systems: Design and Experimental Comparison, IEEE/ACM
Trans. on Networking 23 (3) (2015) 741–754.

[19] S. Dolev, Y. Elovici, R. Puzis, Routing betweenness centrality, J. ACM
57 (4) (2010) 25:1–25:27.

[20] L. Maccari, R. Lo Cigno, Pop-routing: Centrality-based tuning of control
messages for faster route convergence, in: 35th Annual IEEE Int. Conf. on
Computer Communications (INFOCOM), San Francisco, CA, Apr. 2016,
pp. 1–9.

[21] L. Maccari, R. Lo Cigno, Waterwall: a cooperative, distributed firewall for
wireless mesh networks, EURASIP Jou. on Wireless Communications and
Networking 2013 (225) (Sept. 2013) 1–12.

[22] L. Maccari, R. Lo Cigno, Betweenness estimation in OLSR-based multi-hop
networks for distributed filtering, Elsevier Jou. of Computer and System
Sciences 80 (3) (May, 2014) 670–685.

[23] A. Vzquez-Rodas, L. J. de la Cruz Llopis, A centrality-based topology
control protocol for wireless mesh networks, Ad Hoc Networks 24, Part B
(2015) 34–54.

[24] Y. Sakata, K. Takayama, R. Endo, H. Shigeno, A Chunk Scheduling Based
on Chunk Diffusion Ratio on P2P Live Streaming, in: IEEE NBiS, Sept.
2012, pp. 74–81.

[25] K.-L. Hua, G.-M. Chiu, H.-K. Pao, Y.-C. Cheng, An efficient scheduling
algorithm for scalable video streaming over P2P networks, Elsevier, Com-
puter Networks 57 (14) (Oct. 2013) 2856–2868.

[26] J. Zhang, W. Xing, Y. Wang, D. Lu, Modeling and performance analy-
sis of pull-based live streaming schemes in Peer-to-Peer network, Elsevier
Computer Communications 40 (Mar. 2014) 22–32.

[27] L. Abeni, C. Kiraly, R. Lo Cigno, On the Optimal Scheduling of Streaming
Applications in Unstructured Meshes, in: IFIP Networking, Aachen, DE,
May 2009, pp. 117–130.

[28] F. Harary, Graph theory, Addison-Wesley, Reading, MA, 1969.

[29] H. D. Sherali, J. C. Smith, An improved linearization strategy for zero-one
quadratic programming problems, Optimization Letters 1 (1) (2007) 33–47.

[30] U. Brandes, C. Pich, Centrality estimation in large networks, Int. Jou. of
Bifurcation and Chaos; Special Issue on Complex Networks’ Structure and
dynamics 17 (7) (2007) 2303–2318.

[31] L. Cerda-Alabern, On the topology characterization of Guifi.net, in: IEEE
8th Int. Conf. on Wireless and Mobile Computing, Networking and Com-
munications (WiMob), 2012, pp. 389–396.

[32] R. Puzis, P. Zilberman, Y. Elovici, S. Dolev, U. Brandes, Heuristics for
Speeding Up Betweenness Centrality Computation, in: Privacy, Security,
Risk and Trust (PASSAT), Int. Conf. on and Int. Conf. on Social Comput-
ing (SocialCom), 2012, pp. 302–311.

[33] J. Lofberg, YALMIP: A toolbox for modeling and optimization in MAT-
LAB, in: Computer Aided Control Systems Design, IEEE Int. Symposium
on, IEEE, 2004, pp. 284–289.

[34] L. Maccari, R. Lo Cigno, A week in the life of three large Wireless Com-
munity Networks, Ad Hoc Networks 24, Part B, Elsevier (2015) 175–190.

[35] L. Maccari, Q. Nguyen, R. Lo Cigno, On the Computation of Centrality
Metrics for Network Security in Mesh Networks, in: IEEE Global Commu-
nications Conf. (Globecom), Washington, DC, Dec. 2016, pp. 1–6.

[36] B. Rashid, M. H. Rehmani, Applications of wireless sensor networks for
urban areas, J. Netw. Comput. Appl. 60 (C) (2016) 192–219.

