
Computer Communications 151 (2020) 216–226

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Infective flooding in low-duty-cycle networks, properties and bounds✩

Luca Baldesi a,∗, Leonardo Maccari b, Renato Lo Cigno c

a Department of Information Engineering and Computer Science, University of Trento, Italy
b Department of Environment and Computer Science and Statistics, University of Venice Ca’ Foscari, Italy
c Department of Information Engineering, University of Brescia, Italy

A R T I C L E I N F O

Keywords:
Low-duty-cycle networks
Flooding
Delay
Mesh networks
Unstructured
Infective models
Optimal dissemination

A B S T R A C T

Flooding information is an important function in many networking applications. In some networks, as wireless
sensor networks or some ad-hoc networks it is so essential as to dominate the performance of the entire
system. Exploiting some recent results based on the distributed computation of the eigenvector centrality of
nodes in the network graph and classical dynamic diffusion models on graphs, this paper derives a novel
theoretical framework for efficient resource allocation to flood information in mesh networks with low duty-
cycling without the need to build a distribution tree or any other distribution overlay. Furthermore, the method
requires only local computations based on each node neighborhood. The model provides lower and upper
stochastic bounds on the flooding delay averages on all possible sources with high probability. We show
that the lower bound is very close to the theoretical optimum. A simulation-based implementation allows the
study of specific topologies and graph models as well as scheduling heuristics and packet losses. Simulation
experiments show that simple protocols based on our resource allocation strategy can easily achieve results
that are very close to the theoretical minimum obtained building optimized overlays on the network.

1. Introduction

Flooding, the function of sending a piece of information to all
nodes in a network, is a fundamental and pervasive function in many
protocols, applications, and network architectures as well. Flooding of
Link-State (LS) advertisements in LS routing protocols or streaming in
a multicast group with Peer-to-Peer (P2P) technologies are examples
of flooding in application overlays, [2–5]. In wireless ad-hoc networks
such as WSNs it is normally executed on the physical topology (as
opposed to a logical overlay) and it is so important that its performance
impacts the overall network efficiency [6–8]. In these networks, which
are at the base of Internet of Things (IoT) [9,10], flooding pertains to
sensor data, queries, or messages about diagnosis, localization, routing,
and configuration: In practice in every domain of operation [11].

Flooding can be often solved satisfactorily in traditional networks
and overlays with techniques that build a distribution tree [12,13]
or similar structures, or with brute-force approaches such as limited
flooding (as in Open Shortest-Path First (OSPF) LS advertisements), in
WSN there are three additional challenges: (i) Dynamism; (ii) Energy
consumption; and (iii) Duty cycling, i.e., the ratio between the wake-
up time of the node and the overall time of the cycle [14] that can
be as low as 0.01 or even less [7] when high energy efficiency is
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required. A WSN is dynamic, meaning that even if the nodes are
stationary, the surrounding conditions vary and every now and then
we expect a few links to appear or disappear. Energy efficiency is
hampered by continuous signaling, reduction in duty cycling, need for
overhearing messages. Low duty cycle means that any reconfiguration
takes a long time as nodes seldom wake up, but also that broadcast at
the physical layer cannot be exploited, because the duty-cycling is such
that only one pair of node at a time can communicate. This may look
weird, but considering that overhearing messages costs a lot of energy,
ensuring that only the intended destination hears packets is often the
best solution [15].

For these reason we consider a flooding strategy that does not rely
on trees, that are intrinsically fragile even in presence of minimal
modifications of the topology, and that is intrinsically based on ‘‘cycles’’
by design, which maps perfectly with low duty-cycling networks.

In the rest of the paper we concentrate, as reference scenario, on
WSNs, albeit our results are general and apply to any network, physical
or logical, provided there are reasons to avoid wasting resources and a
notion of communication cycle is present. In this context we use the
term flooding to identify the distribution of information to all nodes in
a network, while the term broadcast is used only to refer to physical
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layer broadcast, even if we never use physical broadcast properties in
this paper.

The contribution of this paper stems from the encounter of a recent
result published in the context of P2P streaming [16], with classical
results from epidemic diffusion based on differential equations [17,18].
We look at the flooding process as the ‘‘infective’’ propagation of
data on a graph: Each node that has already received a message can
infect his own neighbors by sending that message. This observation can
indeed be applied to any flooding technique or protocol. Exploiting the
results in [16] we propose to modify the infective capability, i.e., the
amount of information sent per cycle, of each node in such a way to op-
timize the information distribution. We call this modification RE, since
it is based on the imposition that each node in the network, regardless
of its position in the topology, has the same average probability of
receiving the information. The result is a sound theoretical framework
providing upper and lower stochastic bounds for the maximum flooding
delay. Flooding is performed without building a distribution tree or
any other structure that requires signaling or global coordination, thus
resulting in a very robust system that requires minimal signaling and
adapts naturally to topology changes. Furthermore, we constrain the
total consumption of transmission resources by all nodes to remain
constant, so that the gains provided are due only to better use of
resources and not to the use of more resources.

The theoretical results we derive are confirmed and validated by
event driven simulations on different topologies, applying schedul-
ing heuristics to improve performance, and in presence of packet
losses. This paper extends and completes the work presented at WONS
2019 [1] providing validation and performance results on RE-based
flooding in different topology types, for networks up to 2000 nodes, and
checking that packet scheduling heuristics as well as packet losses do
not hamper the theoretical properties of RE-based flooding and do not
invalidate the stochastic bounds, which are obtained abstracting from
any specific topology or technology. The insights gained with this work
and the implementation simplicity of RE allocation strategies, which do
not require any centralized computation, or heavy signaling, open up
the possibility of designing extremely efficient flooding protocols.

The rest of the paper is organized as follows: we present our
infection flooding model in Section 2; the main theoretical results,
the stochastic delay bounds, are derived in Section 3, in Section 4
we present simulation results validating our framework, Section 5
describes related works and, finally, future works and conclusions are
detailed in Section 6.

2. System model

We consider a connected, multi-hop network described by an undi-
rected graph 𝐺(𝑉 ,𝐸), where 𝑉 is the set of nodes and 𝐸 ⊂ (𝑉 × 𝑉 )
is the set of edges. The network is stationary or with slow mobility as
assumed also in [7,15,19], so that in general the network topology does
not change too much from one wake-up cycle to the next. One node,
called source, is the originator of the message to be flooded, but we do
not make any further assumption on its location in 𝐺; it is likely that
the source changes from one flooding event to another. This scenario
is typical of a WSN used for monitoring, in which at a certain instant a
sensor detects a certain event and alerts the other nodes of the network.
Similarly, flooding is needed for time synchronization of nodes, which
can be triggered by any of the sensors acquiring time from an external
source [20]. In general, any networking application that needs to obtain
a distributed consensus requires, at least from time to time, to perform
flooding of information.

As we observed in the introduction, tree-based overlays are com-
monly built on the mesh network to perform flooding operations;
however, in tree-based flooding, if the source changes the flooding
tree must be recomputed, e.g., using Djikstra algorithm, unless a global
Minimum Spanning Tree is used, which however does not minimize the
distribution delay, and is very sensitive to topology changes. Moreover,

Fig. 1. The network model consists of a mesh network whose nodes have periodic
listening periods 𝜏𝑖 and wake up when necessary in period 𝜏𝑗 to transmit to node 𝑗;
transmissions are unicast as 𝜏𝑖 are separated; in the picture node 0 sends a packet (in
gray) to nodes 1, 3, and 4.

the time interval between two flooding events can be orders of mag-
nitude larger than the wake-up cycle, so changes in the topology are
likely between two flooding events. Tree structures are fragile and must
be maintained over time, requiring a very large signaling overhead for
low duty-cycle networks.

Let 𝑇 be the wake-up cycle. 𝑇 is divided in fixed lengths time slots
of 𝜏 seconds; the time slot must be long enough to allow the sender
and the receiver to synchronize transmit a packet even in presence
of clock drifts. The ratio between 𝑇 and 𝜏 also relates to the number
of nodes that can be in the network without generating pathological
conflicts in the access. For the sake of analytic tractability we assume
that transmissions are successful, as our focus is on the assignment
of transmission resources to nodes based on their topological position
to minimize the flooding delay, so re-transmissions are not essential
to the problem. This assumption is relaxed in Section 4.4, where, via
simulations, we show that losses do not change the ranking of flooding
strategies, and the one we propose remains the best performing one.
Indeed, the presence of losses do not affect the flooding strategy
and resource allocation proposed in this paper, neither the infective
flooding model; however, they make the bounds derived in Section 3
analytically untractable.

Each node wakes up for a single 𝜏 slot during a cycle 𝑇 to listen
for incoming packets and sleeps during the others to reduce energy
consumption, interference, avoid overhearing, or for any other reason.
This assumption is the same adopted, for instance, in [19]. We assume
there is an initialization phase (how it is done is outside the scope
of this paper, see for instance the solution proposed in [21]) during
which nodes select their listening periods and exchange them with their
neighbors. After the initialization, nodes wake up if they have to send
packets during other nodes listening periods or if they have a scheduled
listening period.

Fig. 1 depicts the situation with 5 nodes and a simple topology. 𝜏𝑖
identifies the listening slot of duration 𝜏 selected by node 𝑖. As the duty-
cycle is very low, one can assume that waking periods are different
in the entire network, minimizing interference, but it is enough that
they are different in 2-hop neighborhoods. In Fig. 1, node 0 has some
information to flood. Node 0 has three neighbors, namely 1, 3 and
4, so that, during a time cycle 𝑇 , it can send the information to any
possible subset of its neighbors; if it sends it to all of them it reduces the
reception delay, however, it consumes more resources that can possibly
be wasted in the case its neighbors already received the information
from other nodes (this can happen in larger networks with multi-paths).

We consider each time cycle 𝑇 as a unit of time during which each
node owning information can take the decision to send it to one or more
of its neighbor (a function called scheduling).
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In the following subsections we combine results on the optimality
of receiver-equal resource allocation [16] together with an infective
model dissemination on graphs to derive bounds on the performance
of information flooding on mesh networks with minimal signaling.

Unlike the widely used flooding strategy for which each node uses
the same amount of resources per unit of time [22], which we call
SE, a RE strategy guarantees that in a streaming application, in which
a source injects into the network a sequence of packets, every node
receives the same amount of information at steady state given that the
total use of resources are minimal. Minimal resources means that, if
𝐵𝑠 bit/s is the stream bandwidth, then the overall capacity allocated in
the network is |𝑉 | × 𝐵𝑠. This node resource allocation is proportional
to the eigenvector centrality of the nodes in 𝐺(𝑉 ,𝐸).

The eigenvector centrality of a network node measures its impor-
tance with respect to its neighbor importance. Such interpretation has
been used for evaluating node inter-influence and overall impact [23]
for example in the Google PageRank application [24].

The RE strategy in streaming guarantees the sustainability of
streaming for every node, because every node receive the same amount
of information, equal to the stream rate, per time unit. Other strategies
either use more resources or imply that some node receives less than
the stream rate, thus lagging behind the others, steadily increasing the
playout delay. This same property implies that a RE strategy in flooding
minimizes the overall flooding delay, i.e., the time when all the nodes
have received the information.

An infective model is, in some sense, the mathematical formulation
of opportunistic (or stochastic) flooding. Each node that possesses the
information pass it to one of its neighbors following some protocol,
until all his neighbors have received the information. When this is
true for all nodes, then the information has been flooded to the entire
network.

The goal of this paper is to show that the steady-state reception-
equal property can be applied to flooding of one packet and derive time
bounds for the average case that are independent of the mesh network
topology, so that they can be used as general indications to dimension
applications and/or network resources.

2.1. Reception-equal P2P streaming

In a P2P streaming application there is a source of the stream that
injects packets in the network. Every node (including the source) at
every instant has a buffer of packets that can share with its neighbors,
and decides which packet to share with which neighbor. As stated
above, at steady state, the optimal resource allocation is the one that
guarantees that every node receives the same amount of information
(the same number of packets) per time-interval. The result presented
in [16] can be summarized as follows.

Let 𝐴′ be a stochastic transition matrix for a network 𝐺(𝑉 ,𝐸) as
described in Section 2, so that the element 𝐴′

𝑖𝑗 ∈ [0, 1], 𝐴′
𝑖𝑗 > 0 ⟺

(𝑖, 𝑗) ∈ 𝐸 represents the probability for node 𝑗 to send a packet to node
𝑖 during a cycle 𝑇 and 1⃗𝑇𝐴′ = 1⃗𝑇 . 𝐴′ can be regarded as the adjacency
matrix of 𝐺 whose values represent transmission probabilities.

Let 𝛩𝑗 be the throughput (in terms of packets sent per time cycle
𝑇 ) that node 𝑗 sustains on average and 𝛩 the resulting column vector.
Then, from Theorem 1 in [16] and assuming minimal resource usage
we have:

𝛩𝑗 = 𝑥𝑗
|𝑉 |

∑

𝑘=1

𝐴′
𝑘𝑗

𝑥𝑘
, 𝐴𝑖𝑗 =

𝐴′
𝑖𝑗
𝑥𝑖

∑

|𝑉 |

𝑘=1

𝐴′
𝑘𝑗
𝑥𝑘

(1)

1⃗ = 𝐴𝛩 (2)

|𝛩| = |1⃗| = |𝑉 | (3)

1⃗𝑇𝐴 = 1⃗𝑇 (4)

𝐴′
𝑖𝑗 = 0 ⟺ 𝐴𝑖𝑗 = 0 (5)

where 𝑥𝑖 ∈ R is the eigenvector centrality of node 𝑖. Theorem 1 in [16]
states that the new stochastic transition matrix 𝐴 describes the same
links as 𝐴′ but with different values (Eqs. (4) and (5)), which describe
the probability to send a packet to the neighbors. 𝛩𝑗 represents the
number of packets node 𝑗 sends during 𝑇 and averaging over all nodes
exactly one packet per time cycle is sent (Eq. (3)), which guarantees
that overall the transmission resources remain the same. Eq. (2) ensures
that every node has the same probability of receiving the information
if we average over all possible sources 𝑠 ∈ 𝑉 .

In distributed systems 𝐴′ represents local strategies for forwarding.
A general and wide-spread heuristics is to give the same transmis-
sion probability to every neighbor [22]; this in turns makes 𝐴′ to
be column-uniform (i.e., each column contains either 0 or a column-
specific constant). If 𝐴′ is column-uniform, which means that packets
are sent with uniform probability to the neighbors, which is a very
reasonable assumption, these parameters can be computed locally by
each node simply gossiping their neighborhood set size [16], a property
that guarantees a very simple and low overhead implementation even
in very large networks. In general, the computation of the eigenvector
centrality may be complex, however, as proven in [25], it can be
computed with a distributed algorithm. Section 3 derives stochastic
upper and lower delay bounds independent of the network topology
starting from this elegant result.

In presenting results, for the sake of comparison, we consider also
the SE strategy where each node sends the same amount of information
at every time cycle. To the best of our knowledge, however, it is not
possible to obtain bounds as those derived in Section 2.2 for the SE
strategy; although only a conjecture, this may indicate that for SE
strategies the actual delay bounds for flooding without any topological
constraint and minimal resource use do not exist.

2.2. The infective model

The flooding of a packet in a network can be seen as a virus
propagation starting at the source node, and all nodes being susceptible
to the infection while they do not have the packet and infective when
they have it. We are interested in studying and characterizing the speed
of such infection.

Our infection process corresponds to the elementary SI model: a
node can be in either one of the two states, susceptible (S) or infected
(I), there is no recovery from the infection and nodes remain infectious
indefinitely (they do not die or recover from the infection) [17]. In
networking terminology this means that nodes that have the informa-
tion continue to distribute it until all its neighbors have it, ensuring
flooding. We are aware that there is a large body of literature on disease
spreading, obviously in the medical literature, but also in networking
(see for instance [18,26–29] and references in these works), but indeed
this simple SI model represents exactly what happens flooding a packet
into a network, taking into account the topological properties of the
network graph 𝐺.

The initial spread of a virus in a network subject to the SI model
is exponentially fast [17] and it depends on the largest eigenvalue of
𝐴′ (1 in our case as it is column stochastic) and the rate of infection.
During this initial phase, the nodes with large eigenvector centralities
are more likely to be infected [17].

We call 𝑦𝑖(𝑘) the probability that node 𝑖 is infected at time 𝑘 (we
use discrete time to better map the time cycle 𝑇 ). 𝑆(𝑘), 𝐼(𝑘) are the
group of susceptible and infected nodes at time 𝑘, and 𝑁𝑖 is the set of
neighbor nodes of 𝑖. Hence, the following dynamic equation holds:

𝑦𝑖(𝑘 + 1) = 𝑦𝑖(𝑘) + 𝑃 {𝑖 ∈ 𝑆(𝑘), 𝑗 ∈ 𝐼(𝑘), 𝑗 infects 𝑖,∀𝑗 ∈ 𝑁𝑖} (6)

Eq. (6) states that the probability that node 𝑖 is infected at time 𝑘 + 1
is given by the same probability at the previous time step plus the
probability of transition from the susceptible state to the infected one,
which occurs if at least one neighbor 𝑗 is infected (at time 𝑘) and pass
the infection.
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Unfortunately, Eq. (6) cannot be integrated in closed form con-
ditioned on the graph topology, and it is hence difficult to handle
mathematically. To ease the analysis we take advantage of its first order
approximation (see Section 3.3 for a discussion on this approximation):

𝑦𝑖(𝑘 + 1) = 𝑦𝑖(𝑘)+

(1 − 𝑦𝑖(𝑘))(1 − 𝑃 {𝑗 ∈ 𝐼(𝑘),∀𝑗 ∈ 𝑁𝑖, 𝑗 does not infect 𝑖}) (7)

In the case of packets flooding using the reception-equal strategy we
have that 𝑗 infects 𝑖 (𝑗 sends a packet to 𝑖) with probability 𝐴𝑖𝑗𝛩𝑗 (the
throughput of 𝑗 multiplied by the probability of sending a packet to
neighbor 𝑖). Eq. (7) can be expressed in closed form as:

𝑦𝑖(𝑘 + 1) = 𝑦𝑖(𝑘)+

[1 − 𝑦𝑖(𝑘)]

[

1 −
|𝑉 |

∏

𝑗=1
[1 − 𝑦𝑗 (𝑘)𝐴𝑖𝑗𝛩𝑗 ]

]

(8)

the next section exploits this approximation to derive closed form upper
and lower stochastic delay bounds.

3. Flooding delay bounds

To derive the upper and lower stochastic bounds for the distribution
delay, we assume that each node in a network can be the source with
uniform probability, i.e., 𝑦𝑖(0) =

1
|𝑉 |

∀𝑖.
We first state the bounds formulation, and then we prove, in The-

orem 1, that they limit, in the stochastic sense, the evolution of the SI
diffusion model 𝑦𝑖(𝑘). The upper bound is:
{

𝜔(𝑘 + 1) = 2𝜔(𝑘) − 𝜔2(𝑘)
𝜔(0) = 1

|𝑉 |

(9)

and the lower bound is:
{

𝛺(𝑘 + 1) = 2𝛺(𝑘) − 3
2𝛺

2(𝑘) + 𝛺3(𝑘)
2

𝛺(0) = 1
|𝑉 |

(10)

Both Eqs. (9) and (10) have two fixed points {0, 1} the latter of
which is attractive; 𝜔(𝑘), 𝛺(𝑘) are monotonically increasing functions
and, given their initial value 𝜔(0) = 𝛺(0) = 1

|𝑉 |

their values are in the
interval [ 1

|𝑉 |

, 1). Moreover, 𝜔(𝑘) ≥ 𝛺(𝑘), ∀𝑘.

Theorem 1. Given a uniform initial probability 𝑦𝑖(0) =
1
|𝑉 |

, ∀𝑖, then

𝛺(𝑘) ≤ 𝑦𝑖(𝑘) ≤ 𝜔(𝑘), ∀𝑖, 𝑘

Proof. Given the reception-equal property (Eq. (2)) the following
identities hold for any 𝑘:

𝜔(𝑘 + 1) = 2𝜔(𝑘) − 𝜔2(𝑘) =

𝜔(𝑘) + (1 − 𝜔(𝑘))
|𝑉 |

∑

𝑗=1
𝜔(𝑘)𝐴𝑖𝑗𝛩𝑗 =

𝜔(𝑘) + (1 − 𝜔(𝑘))

[

1 −

(

1 −
|𝑉 |

∑

𝑗=1
𝜔(𝑘)𝐴𝑖𝑗𝛩𝑗

)]

(11)

and

𝛺(𝑘 + 1) = 2𝛺(𝑘) − 3
2
𝛺2(𝑘) +

𝛺3(𝑘)
2

=

𝛺(𝑘) + (1 −𝛺(𝑘))

[

|𝑉 |

∑

𝑗=1
𝛺(𝑘)𝐴𝑖𝑗𝛩𝑗+

−1
2

|𝑉 |

∑

𝑗=1

|𝑉 |

∑

𝑧=1
𝛺(𝑘)𝐴𝑖𝑗𝛩𝑗𝛺(𝑘)𝐴𝑖𝑧𝛩𝑧

]

=

𝛺(𝑘) + [1 −𝛺(𝑘)]

[

1 −

(

1 −
|𝑉 |

∑

𝑗=1
𝛺(𝑘)𝐴𝑖𝑗𝛩𝑗+

1
2

|𝑉 |

∑

𝑗=1

|𝑉 |

∑

𝑧=1
𝛺(𝑘)𝐴𝑖𝑗𝛩𝑗𝛺(𝑘)𝐴𝑖𝑧𝛩𝑧

)]

(12)

The last element of Eq. (12) is represented compactly as

1
2

|𝑉 |

∑

𝑗=1

|𝑉 |

∑

𝑧=1
𝑏𝑗𝑏𝑧

where

𝑏𝑗 = 𝛺(𝑘)𝐴𝑖𝑗𝛩𝑗 ∈ R+.

Since

1
2

|𝑉 |

∑

𝑗=1

|𝑉 |

∑

𝑧=1
𝑏𝑗𝑏𝑧 =

|𝑉 |

∑

𝑗=1

|𝑉 |

∑

𝑧>𝑗
𝑏𝑗𝑏𝑧 +

1
2

|𝑉 |

∑

𝑗=1
𝑏2𝑗

then

1
2

|𝑉 |

∑

𝑗=1

|𝑉 |

∑

𝑧=1
𝑏𝑗𝑏𝑧 ≥

|𝑉 |

∑

𝑗=1

|𝑉 |

∑

𝑧>𝑗
𝑏𝑗𝑏𝑧

and finally

𝛺(𝑘 + 1) ≤ 𝛺(𝑘)+

[1 −𝛺(𝑘)]

[

1 −

(

1 −
|𝑉 |

∑

𝑗=1
𝛺(𝑘)𝐴𝑖𝑗𝛩𝑗+

|𝑉 |

∑

𝑗=1

|𝑉 |

∑

𝑧>𝑗
𝛺(𝑘)𝐴𝑖𝑗𝛩𝑗𝛺(𝑘)𝐴𝑖𝑧𝛩𝑧

)]

(13)

The derivation of the bounds is now by induction over 𝑘.

Upper bound.
We first prove 𝑦𝑖(𝑘) ≤ 𝜔(𝑘) by induction over 𝑘.

(𝐤 = 𝟎) 𝜔(0) ≥ 𝑦𝑖(0) ∀𝑖 by definition.
Assuming for the induction 𝜔(𝑘) ≥ 𝑦𝑖(𝑘) ∀𝑖, 𝑘 = 1,… , 𝑧

(𝐤 = 𝐳 + 𝟏) From Eq. (2) we have that 𝐴𝑖𝑗𝛩𝑗 ≤ 1 ∀𝑖, 𝑗, and the following
three inequalities hold:

𝑦𝑖(𝑘)𝐴𝑖𝑗𝛩𝑗 < 1; 𝛺(𝑘)𝐴𝑖𝑗𝛩𝑗 < 1; 𝜔(𝑘)𝐴𝑖𝑗𝛩𝑗 < 1 (14)

and, thus, we can apply the Weierstrass product inequality,
𝑛
∏

𝑖=1
(1 − 𝑎𝑖) ≥ 1 −

𝑛
∑

𝑖=1
𝑎𝑖

(with 𝑎𝑗 = 𝜔(𝑧)𝐴𝑖𝑗𝛩𝑗) to Eq. (11), obtaining the following:

𝜔(𝑧 + 1) ≥ 𝜔(𝑧) + (1 − 𝜔(𝑧))

[

1 −
|𝑉 |

∏

𝑗=1
(1 − 𝜔(𝑧)𝐴𝑖𝑗𝛩𝑗 )

]

For simplicity we call 𝜓 = 1 −
∏

|𝑉 |

𝑗=1(1 − 𝜔(𝑧)𝐴𝑖𝑗𝛩𝑗 ) then,

𝑦𝑖(𝑧 + 1) = 𝑦𝑖(𝑧) + (1 − 𝑦𝑖(𝑧))

[

1 −
|𝑉 |

∏

𝑗=1
(1 − 𝑦𝑗 (𝑧)𝐴𝑖𝑗𝛩𝑗 )

]

≤ 𝑦𝑖(𝑧) + (1 − 𝑦𝑖(𝑧))𝜓

as, because of the inductive step, 𝜔(𝑧) ≥ 𝑦𝑖(𝑧) ∀𝑖, 𝑧.
Subtracting 𝑦𝑖(𝑧 + 1) from 𝜔(𝑧 + 1) we get

𝜔(𝑧 + 1) − 𝑦𝑖(𝑧 + 1) ≥ 𝜔(𝑧) − 𝑦𝑖(𝑧) + (𝑦𝑖(𝑧) − 𝜔(𝑧))𝜓

= (𝜔(𝑧) − 𝑦𝑖(𝑧))(1 − 𝜓)

as 𝜔(𝑧) ≥ 𝑦𝑖(𝑧) and 𝜓 < 1, then (𝜔(𝑧) − 𝑦𝑖(𝑧))(1 − 𝜓) ≥ 0 and finally

𝜔(𝑧 + 1) ≥ 𝑦𝑖(𝑧 + 1).

Lower bound.
The proof of 𝑦𝑖(𝑘) ≥ 𝛺(𝑘) is again by induction over 𝑘,

(𝐤 = 𝟎) 𝛺(0) ≤ 𝑦𝑖(0) ∀𝑖 by definition.
Assuming for the induction 𝛺(𝑘) ≤ 𝑦𝑖(𝑘) ∀𝑖, 𝑘 = 1,… , 𝑧

219



L. Baldesi, L. Maccari and R. Lo Cigno Computer Communications 151 (2020) 216–226

(𝐤 = 𝐳 + 𝟏) Given Eq. (14), we can apply the inequality by Klamkin and
Newman [30],
𝑛
∏

𝑖=1
(1 − 𝑎𝑖) ≤ 1 −

𝑛
∑

𝑖=1
𝑎𝑖 +

𝑛
∑

𝑖=1

∑

𝑗>𝑖
𝑎𝑖𝑎𝑗

(with 𝑎𝑗 = 𝛺(𝑧)𝐴𝑖𝑗𝛩𝑗) to Eq. (13), resulting in:

𝛺(𝑧 + 1) ≤ 𝛺(𝑧) + (1 −𝛺(𝑧))

[

1 −
|𝑉 |

∏

𝑗=1
(1 −𝛺(𝑧)𝐴𝑖𝑗𝛩𝑗 )

]

For simplicity we call

𝛹 = 1 −
|𝑉 |

∏

𝑗=1
(1 −𝛺(𝑧)𝐴𝑖𝑗𝛩𝑗 )

and we obtain

𝑦𝑖(𝑧 + 1) ≥ 𝑦𝑖(𝑧) + (1 − 𝑦𝑖(𝑧))𝛹

as, because of the inductive step, 𝛺(𝑧) ≤ 𝑦𝑖(𝑧) ∀𝑖, 𝑧.
Subtracting 𝛺(𝑧 + 1) from 𝑦𝑖(𝑧 + 1) we get

𝑦𝑖(𝑧 + 1) −𝛺(𝑧 + 1) ≥ (𝑦𝑖(𝑧) −𝛺(𝑧))(1 − 𝛹 )

as 𝛺(𝑧) ≤ 𝑦𝑖(𝑧) and 𝛹 < 1 then (𝑦𝑖(𝑧) −𝛺(𝑧))(1 − 𝛹 ) ≥ 0 and finally

𝛺(𝑧 + 1) ≤ 𝑦𝑖(𝑧 + 1). □

Theorem 1 exploits the first order approximation of the SI model on
a graph 𝐺 given by Eq. (8), and applies the reception-equal property
granted by Eq. (2) to derive theoretical stochastic upper and lower
bounds for the probability that node 𝑖 is infected, i.e., it has received
the information, at time 𝑘.

A node-independent bound express the probability that a generic
node has received the packet regardless of its position in the network
averaged on all the possible sources of the information. These bounds
can also be interpreted as bounds on the information delay expectation
for each node when there is no knowledge on the information source
position, or in the SI terminology, when the initial probability of
infection is 𝑦𝑖(0) =

1
|𝑉 |

∀𝑖.
The importance of these bounds is that they are topology inde-

pendent, thus they give a very powerful design tool to set the com-
munication cycle duration and other network tuning parameters when
some constraints on information dissemination should be met with high
probability.

3.1. Solving the bounds

Eq. (9) is a second order difference equation similar to the logistic
map, but its parameters keep it in the stability region (it is not chaotic),
furthermore we are only interested in studying its value for 𝜔(𝑘) ∈
[0, 1]. Eq. (9) has two fixed points, 𝜔(𝑘) = {0, 1}. The first one is
irrelevant as 𝜔(0) > 0 and the latter is an attractor as Eq. (9) is
non-decreasing.

Let 𝜔(𝑘) = 1− 𝜖𝑘 be the probability that node 𝑖 is infected at time 𝑘,
with 𝜖0 = 1 − 1

|𝑉 |

, then we have

𝜔(𝑘 + 1) = 1 − 𝜖𝑘+1 = 2(1 − 𝜖𝑘) − (1 − 𝜖𝑘)2 =

2 − 2𝜖𝑘 − 1 + 2𝜖𝑘 − 𝜖2𝑘 = 1 − 𝜖2𝑘

and consequently 𝜖𝑘+1 = 𝜖2𝑘 that finally implies

𝜔(𝑘) = 1 − 𝜖2
𝑘

0 = 1 −
(

1 − 1
|𝑉 |

)2𝑘

(15)

and solving for 𝑘

𝑘 =
⌈

log2

(

log(1− 1
|𝑉 |

)(1 − 𝑝)
)⌉

, ∀ 𝑝 ∈
(

1
|𝑉 |

, 1
)

(16)

where 𝑘 is the average number of time cycles needed for a node to have
received a packet with probability 𝑝.

Eq. (15) indicates that the reception-equal condition grants, re-
gardless of the network topology of 𝐺, a double exponential speed of
convergence (much faster than the exponential speed in the SI model)
in the early distribution phase (when 𝑦𝑖(𝑘)≪ 1, ∀𝑖).

Eq. (10) is strictly non-decreasing for 𝛺(𝑘) ∈ [0, 1) and with a slower
growth than Eq. (9). Unfortunately, Eq. (10) cannot be stated in closed
form, but we can numerically integrate the difference equation.

3.2. Energy consumption with RE strategy

Energy consumption is one of the key performance metrics in
battery-powered networks. The RE property we are exploiting in this
work (see [16]) grants that each node 𝑗 sends at most 𝑘𝛩𝑗 during 𝑘
cycles; furthermore it is also granted that 𝛩𝑗 ≤ |𝑁𝑗 | where 𝑁𝑗 is the
neighbor set of node 𝑗. These bounds allow a node to tune its own
energy consumption: if a node is low on battery, it can simply reduce its
neighbor set (dropping some links, or simply avoiding communicating
their presence) and let the system recompute the optimal parameters.
In the column-uniform scenario, parameter computation can be done
locally gossiping the neighbor set size with neighbors [16], hence their
update is energetically cheap. The actual energy consumption is also
function of the packet scheduling efficiency (avoidance of duplicates)
and it is outside the scope of this work.

3.3. Model limitations

The model we described is very powerful but it is not truly univer-
sal, as it relies on a set of assumptions.

The first limitation lies in the approximation introduced by Eq. (7),
and can be easily explained with an example. Consider a linear net-
work, in which every node has exactly two neighbors (excluding the
nodes at the extremes) and the diameter of the network is |𝑉 | − 1.
Then at most two nodes get infected per time cycle. In this corner case
the delay needed to achieve 𝑝 = 0.9999% grows linearly with |𝑉 | and
breaks the theoretical bounds we formulated. Eq. (7) in fact assumes
that 𝑃 {𝑖 ∈ 𝑆} is independent of 𝑃 {𝑗 ∈ 𝐼} and multiplies the two
probabilities. This assumption is strictly true only in a full mesh, as
all nodes are neighbors so the probability of 𝑗 to be infected at time 𝑘
depends only on the total number of infected nodes at time 𝑘 − 1 and
not on their position. In general this is not true, as 𝑃 {𝑖 ∈ 𝑆} depends on
𝑃 {𝑗 ∈ 𝑆} if 𝑗 and 𝑖 are neighbors, while the inference between 𝑃 {𝑗 ∈ 𝑆}
and 𝑃 {𝑖 ∈ 𝑆} decreases with the distance from 𝑗 to 𝑖. In terms of density
and path diversity the linear network is at the opposite extreme of a
full mesh, thus it is not surprising that our model fails to capture its
behavior.

The second limitation lies in the fact that our bound gives an aver-
age delay computed over all the possible sources and destinations, but
it does not describe the distribution of the delay. In graphs that show
some regularity (like an Erdős–Rényi graph) we expect the deviation
from the mean to be narrow, but in general this may not be true.

Finally, the analysis models a zero-signaling dissemination, without
any heuristic to limit duplicates or a protocol to coordinate nodes.
In real applications simple heuristics can be used to improve the
information diffusion (e.g., do not send the packet twice to the same
neighbor, and do not send it back to the neighbor that sent it to you).
Also, what is the impact of packet losses on RE strategy, do they hamper
it more than traditional SE ones or vice-versa the gain achieved is even
larger?

Three interesting questions arises from these model approximations
and considerations:

(Q1) Do the bounds still hold when we apply the RE strategy to
networks that have a density much lower than a full mesh, and
hence the simple SI independence assumptions do not hold?

(Q2) How sensitive is delay to the position of the source?

(Q3) Is the RE still optimal if we introduce scheduling heuristics or
consider lossy links?

Section 4 analyzes and gives insight in these three important questions.

220



L. Baldesi, L. Maccari and R. Lo Cigno Computer Communications 151 (2020) 216–226

4. Numerical results

To investigate the three questions posed above, we implemented
an ad-hoc, event-driven simulator in Python. The simulator actually
generates and spread packets in networks with arbitrary topology. The
packet transmission time is considered much smaller than the duty-
cycle as reasonable in low duty-cycle networks, and the propagation
delay is negligible. In every simulation experiment one node, called
source, generates one information message and sends it to a neighbor at
random. From that moment on, the source behaves as any other node
in the flooding process; the experiment ends at time 𝑘 when all the
nodes have received the message. Each experiment is repeated 20 times
to account for the randomness and variability of the flooding process
computing 𝑘 average and variability (standard deviation).

We compare this quantity with 𝜔−1(𝑝) and 𝛺−1(𝑝) for 𝑝 = 0.9999
(assumed as certainty of reception as the bounds are stochastic and go
to ∞ for 𝑝 = 1). Bounds are normally identifies with marks, while solid
lines identify RE, the reception-equal optimized strategy of Section 2.1,
and SE the sending-equal standard strategy.

Furthermore, where it is meaningful to gain insight in the problem,
we also report two additional ‘‘limits’’ or bounds. The first one is the
well known log2(|𝑉 |) + 1 cycles, which defines the minimum possible
delay diffusion when nodes transmit one message per cycle, and stems
from the simple observation that in this case the number of message
copies in the network can at most double at every cycle. The second one
is the maximum distance from the source, which defines the absolute
minimum diffusion time given a source and the minimum spanning tree
that reaches all nodes from the source. Notice that in this case nodes
are not constrained to transmit one message per cycle, but each node
sends as many copies as its outgoing links in the tree.

Performance comparison with other optimization or heuristic-based
techniques such as the tree-based solution proposed in [7] are outside
the scope of this work, as they would require a full implementation
and also to consider details and constraints that are not coherent with
the generality of the theoretical approach adopted here. Nevertheless,
a full implementation of a flooding protocol based on the RE strategy
and its comparison with other techniques that use the same amount
of transmission resources is feasible, and it is of the utmost interest as
future work.

The first set of results, reported in Section 4.1, answers question
Q1. To achieve this goal we use Barabási–Albert and Erdős–Rényi
networks for their well-known properties; the first one is a class of
preferential-attachment graphs, for which there are few nodes well
connected within each other and the rest of the network, while the
remaining nodes have few peripheral connections (this is the class of
a large part of real-world networks, like the internet and social net-
works). Barabási–Albert graph generators take in input a parameter 𝑚
indicating for each node how many outgoing link are setup. The Erdős–
Rényi type of network is a model for which links are independently
randomly picked with a probability 𝑝; this class has been widely studied
as it allows an easy derivation of statistics (this is typically the class of
P2P overlay networks). We vary the network parameters, and we show
that our theoretical bounds hold even in networks with density far from
a full mesh. The second set of results, shown in Section 4.2, answers
question Q2. We show that our bounds are still valid even when we
consider the results for each single source. Finally, the third set of
results, in Section 4.3, answers question Q3. We show that packet losses
do not hamper the bounds, while simple heuristics applied to message
scheduling improve RE-based results bringing them, as expected, below
the scheduling agnostic stochastic threshold. As a further comparison
and validation we introduce, in Section 4.4, a third family of graphs
(Waxman) with completely different characteristics. Waxman networks
are created placing nodes randomly in a rectangular area and then plac-
ing links between them with a probability 𝑝𝑤 exponentially dependent
on their distance 𝑑: 𝑝𝑤 = 𝛼 ⋅ 𝑒

𝑑
𝛽 , where 𝛼, 𝛽 are free parameters.

Fig. 2. Flooding delay mean and standard deviation on Barabási–Albert networks of
100 nodes.

Fig. 3. Flooding delay mean and standard deviation on Erdős–Rényi networks of 100
nodes.

4.1. Results on low density graphs

We simulate Erdős–Rényi and Barabási–Albert networks with a low
and approximately constant edge density |𝐸|

|𝑉 |

≃ 4. For each network
type, we execute 100 different experiments (each consisting of 20 rep-
etitions) picking a different node as the source, thus each experiment
(one point in a graph) consists of 2000 different simulations.

We first show, in Figs. 2 and 3, the flooding performance across
multiple graph realizations using the same graph parameters. The 𝑥
axis consists of 40 different network realizations (graph id). The figures
show that the point estimate of the average time 𝑘 to complete the
flooding with RE strategy falls between the bounds, which confirms
that the theoretical bounds hold beyond the approximations needed
to obtain them. On the other hand SE-based dissemination performs
poorly, constantly around the upper bound (i.e., larger distribution
time 𝛺−1) of RE. Moreover, SE strategy, failing to adapt to topological
properties of the network, sometimes (e.g., graphs 17 and 29 in Fig. 2)
display an extremely poor performance while RE adapts to the graph
characteristics maintaining roughly constant performance.

Figs. 4 and 5 explore the influence of the network size on the RE
and SE strategies and on the bounds on RE. We explore Barabási–
Albert and Erdős–Rényi networks with up to 2000 nodes; the bounds
hold independently of the network size for the point estimate and
for the standard deviation. On the other hand SE-based dissemination
performance degrades with the network size and significantly deviates
even from the lower performance bound (𝛺) of RE.

Figs. 4 and 5 report also another bound (see [31] for a distributed
scheduling achieving it for streaming applications) that defines the
lowest possible delay in a full-mesh network with complete knowledge
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Fig. 4. Mean and standard deviation (as barbs) for the dissemination delay and
theoretical bounds for Barabási–Albert networks varying |𝑉 |.

Fig. 5. Mean and standard deviation (as barbs) for the dissemination delay and
theoretical bounds for Erdős–Rényi networks varying |𝑉 |.

of nodes state (each node knows what are the nodes that have not yet
received the message) for SE strategies. Such bound is important to
our study as we can compare state-agnostic RE strategies and bounds
with a bound that requires full-knowledge of the network state to
be achieved. It is interesting how 𝜔−1 is close to this bound, which
suggests that an optimal scheduling associated with an RE strategy can
actually improve the flooding delay beyond the minimum achievable
with SE strategies without using (globally) more resources. This would
actually move the lowest achievable delay bound beyond the state-of-
art for unstructured flooding distribution, at the only cost of allocating
transmission resources non uniformly among nodes.

Results presented so far are obtained maintaining the graph density
constant to ease the comparisons. Figs. 6 and 7 present flooding de-
lay results varying the graph distribution parameters, which produce
networks of growing density. The ‘‘m’’ parameter in Barabási–Albert
networks refers to the number of bi-directional links that every new
node added to the network establishes with already existing nodes. The
‘‘p’’ parameter in Erdős–Rényi networks is the probability of adding a
link with any of the other nodes. RE steadily performs better than SE
and the point estimate always falls between the two bounds, while in
some cases (specific network realization with some given source node)
the distribution delay is even smaller than the 𝜔−1 bound of the aver-
age, which is however fully admissible from a theoretic point of view.
The impressive reduction in source dependent variability compared to
SE is remarkable.

Fig. 6. Flooding delay mean and standard deviation on Barabási–Albert networks of
100 nodes varying the ‘‘m’’ parameter of the distribution.

Fig. 7. Flooding delay mean and standard deviation on Erdős–Rényi networks of 100
nodes varying the distribution ‘‘p’’ parameter.

Fig. 8. Ordered eigenvector centrality of nodes in a Barabási–Albert network of 100
nodes.

4.2. Dependency on the source position

Here we answer Q2 and present insights on the correlation between
flooding time and the position of the source node. Once verified that
our bound holds on average, we want to show that it also gives a good
indication on the flooding performance of each possible source.

We first focus on a specific graph to clarify RE properties. Fig. 8
reports the ordered values of the eigenvector centrality for the nodes
of a 100-nodes Barabási–Albert graph, and Fig. 9 shows the flooding
delay simulated placing the source in each node (point estimate of
the average and standard deviation barbs) with the nodes in the same
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Fig. 9. Flooding delay mean and standard deviation on a Barabási–Albert network of
100 nodes varying the source node centrality (source nodes are sorted with respect their
centrality value). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 10. Flooding delay mean and standard deviation on Barabási–Albert networks
using the most and least central nodes as sources for RE and SE strategies.

order of Fig. 8. In contrast to the SE strategy, the RE strategy flooding
delay is sensitive to source node centrality (compare the blue curve and
marks with the crosses that indicate the average value), but the per-
node average performance always falls between the bounds, excluding
a very few central nodes for which the performance is better than the
average lower bound. It is also worth noticing how, regardless of node
centrality, RE flooding delay performances are clearly separated from
SE values, excluding the possibility of casual results and highlighting
the fact that the gain in average is not achieved penalizing less central
nodes.

To further extend the validation, Figs. 10 and 11 report the flooding
delay on Barabási–Albert and Erdős–Rényi networks of growing size
with constant density ( |𝐸|

|𝑉 |

≃ 4). For each graph we show the perfor-
mance of the most central and the least central nodes, and we compare
RE with SE and report the RE bounds as well. These results confirm the
previous findings: RE performance falls between the bounds in almost
all the cases; the few exceptions in Barabási–Albert graphs perform
better than the lower bound, while in Erdős–Rényi graphs the least
central sources slightly exceed the upper average bound. For any size
RE performs significantly better than SE, which appears to be less
dependent on the centrality of the source, but it is always worse than
the upper bound on the RE strategy.

4.3. Results with scheduling heuristics

Results in the previous sections show how the RE strategy lies within
the stochastic bounds in generic topologies and always outperforms

Fig. 11. Flooding delay mean and standard deviation on Erdős–Rényi networks using
the most and least central nodes as sources for RE and SE strategies.

Fig. 12. Flooding delay mean and standard deviation on Barabási–Albert networks
when the source is the most central nodes and scheduling heuristics are applied.

Fig. 13. Flooding delay mean and standard deviation on Erdős–Rényi networks when
the source is the most central nodes and scheduling heuristics are applied.

SE. As our model cannot capture some real world effects, we still
have to answer question Q3. In this section we introduce some simple
scheduling heuristics and show that the RE strategy is further improved,
in other words, that any intelligent flooding protocol will likely benefit
from the adoption of RE.

Figs. 12 and 13 report performance result comparison between SE
and RE strategies using simple scheduling heuristic: do not send the
packet twice to the same neighbor, and do not send it back to the neighbor
that sent it to you. The figures refer to Barabási–Albert and Erdős–Rényi
graphs of growing size, and are similar to Figs. 4 and 5, but they show
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Fig. 14. Flooding delay mean and standard deviation on Waxman network of 100
nodes as a function of the source node centrality (source nodes are sorted with respect
their centrality value).

Fig. 15. Flooding delay confidence interval (at 99%) on a Waxman network of 100
nodes with a Bernoulli link loss model.

only the behavior of the most central node in the network. This makes
it possible to compare RE performance with another meaningful bound:
the maximum distance from the source. In practice, we are comparing
RE with the delay achievable flooding the information on a minimum
depth tree rooted in the source. Note that to achieve this bound, in
practice, the network should be able to build a tree rooted on the
source and maintain it at every topology change, which is a very costly
operation in a network with frequent topology changes. Yet RE, which
is fully distributed and needs only local interactions for maintenance,
performs surprisingly close to this optimum in both kinds of graphs.

4.4. Results on Waxman graphs with losses

As a further validation step we simulate a different family of graphs:
Waxman graphs. Barabási–Albert and Erdős–Rényi graphs do not sup-
port any notion of space (and hence are easy to generate and ma-
nipulate). Nodes do not have spatial coordinates, and thus, they are
all treated equally. Real world networks are instead spatial networks,
and their characteristics differ from synthetic graphs, for instance,
they introduce border effects [32]. Among the many models available
for spatial networks, Waxman graphs are the simplest model used to
represent communication networks [33]. For our tests we use Waxman
graphs generated with parameters 𝛼 = 0.4, 𝛽 = 0.2, granting the density
|𝐸|
|𝑉 |

≃ 4.
Fig. 14 reports the same results presented in Fig. 9 obtained on a

Waxman graph of 100 nodes. The results follow the same trend of Fig. 9
with a slightly more noisy behavior, which confirms the bounds hold
also on graph whose characteristics are far from the infection model.

We also report the performance of RE with scheduling heuristics, which
confirms a clear improvement.

As a final step, we also explore the performance with packet losses.
Given a Waxman graph, we simulate flooding with a loss probability on
the links that follows a Bernoullian distribution with average link loss
𝑝𝑙 and we measure the propagation delay. Fig. 15 reports the flooding
delay confidence intervals with 99% confidence level considering a
link loss probability 𝑝𝑙 ∈ [0, 0.3]. As expected at this point, even with
extremely high values of 𝑝𝑙, RE performs constantly better than SE
and applying scheduling heuristics further improve it, also reducing the
standard deviation.

5. Related works

Low-duty-cycle WSNs are said synchronous if the node active state
happens at a fixed time or asynchronous if they are scheduled inde-
pendently. Literature focuses mostly on asynchronous low-duty-cycle
WSNs, where often tree-based dissemination or collection overlays are
built. This overview of literature focuses both on recent papers that
address the problem of information flooding (not collection to a sink)
in WSNs, and on papers that analyze or propose epidemic dissemination
techniques, in this case not limited to WSNs, but ranging also from P2P
networks to classical infection models used in, or derived from, medical
literature.

5.1. Flooding in WSNs

Wang and Liu [14] propose a reinterpretation of flooding for the
context of WSNs and they provide a centralized optimization model
from which they derive an approximated distributed solution. Flooding
has been also investigated by Cao et al. using Fountain coding [34]. Our
approach is completely distributed.

While RE works with unstructured mesh networks, several works
have been proposed for flooding on tree networks; Guo et al. [7]
address both the delay and the energy constraints deriving a tree-based
distribution solution considering lossy links. Cheng et al. [19] propose
a flooding tree construction algorithm optimized with respect to the
energy consumption, but also considering delay bounds. This algorithm
is an approximated distributed version of a centralized optimal one.
The work by Niu et al. [35] follows the same scheme as they propose a
heuristic algorithm derived from a minimum spanning tree centralized
model. Yan et al. [36] investigate the potential of network coding in
the context flooding using trees.

There are also works optimizing existing flooding solutions; Cheng
et al. [6] propose the Dynamic Switching-based Reliable Flooding
(DSRF) to enhance the reliability of flooding. The flooding optimization
by Guo et al. [37] synchronize the active state of nodes sharing the
same parent node in a tree. Physical channel overhearing has been
investigated by Xu et al. [38] as a mean to save delay during message
flooding. These works can be used on top of other strategies.

Asynchronous Duty-cycle Broadcasting (ADB) is a protocol imple-
mented directly in the MAC layer of WSN nodes which allows flooding
by exploiting MAC-layer information. This however implies the tied
coupling of the cross-layer approaches.

In contrast to recent publications on flooding on WSN, our approach
is fully decentralized and works with unstructured mesh networks with-
out the aid of trees. That grants a higher degree of robustness against
node failure, a lower signaling overhead, and promising applications in
time-varying networks. One limitation to be explored in future work is
the impact and exploitation of broadcast communications on wireless
channels.

224



L. Baldesi, L. Maccari and R. Lo Cigno Computer Communications 151 (2020) 216–226

5.2. Epidemics and networks

Epidemics, the field about modeling and analyzing the dynam-
ics of virus spreading, has been prolific in the past decades, though
only recently proper insights on how to control it has been pro-
vided [26]. A large part of computer science literature on epidemics
focus on malware spreading [27,28,39]. Chen et al. [28] use the
Susceptible–Infected–Recovered (SIR) model to control dissemination
of information in heterogeneous, time-varying networks. The work by
Dadlani et al. [27] uses a SIS model instead and provide infection
stability results. This work, together with the one by Ganesh et al. [40]
highlight the importance of being dependent on a specific network
topology for studying epidemics. That is a crucial observation that our
approach overcomes exploiting the reception-equal property obtained
with the re-assignment of resources based on the eigenvector centrality.

Works by Liu and Buss [41] and by Ogura and Preciado [42]
use the SIS model for data dissemination; the former optimizing the
node transmission rate while the latter defining exponential growth
conditions for time-varying networks. Chen et al. [43] uses epidemics
to model and analyze information spreading in sensor networks.

Other papers deal with different aspects of data dissemination
through epidemics approaches. The paper by Chen et al. [29] focuses
on delivery dynamics on WSN with cognitive radios, the work by
Ramanathan et al. [44] optimize the loss rate for Delay Tolerant Net-
work (DTN) and Byun and So [45] address the context of duty-cycled
Wireless Sensor-Actuator Network (WSAN) and propose a scheme to
adjust the node transmission rates for user-given delay constraint.

None of the aforementioned papers, in part also because of their
application fields, give delays bounds on information flooding that are
independent of the network topology. Up to now it was considered that
the optimal strategy to flood information to all nodes of a network
could not be independent of its topology. The results we are presenting,
instead, show that it is possible to exploit the topological properties
of the network to decorrelate the optimal flooding strategy from the
topology itself. This observation is what enables the general analysis
that in this paper leads to the bounds presented in Section 3.

6. Conclusions and further work

Flooding information to all the nodes of a network remains an
important function in many networks and applications. Many solutions
have been proposed and are working satisfactorily in networks from
P2Ps overlays to WSNs, but in many cases they require a non-marginal
overhead to build a distribution tree, or they are fragile to topology
changes. This paper presented fundamental delay bounds for epidemic
flooding in low duty-cycle networks that exploit the eigenvector cen-
trality of nodes in the network to allocate resources, i.e., how many
copies of the information per time-cycle a node must send, and to whom
of its neighbors. The bounds apply to a resource allocation strategy
that we have called reception equal (RE), and they are independent
of the network topology. They show that with RE flooding the lower
bound on delay converges with double exponential speed, while the
upper bound is exponentially fast, thus ensuring that a proper protocol
designed on these properties will converge at least exponentially fast.
Furthermore, the results are constructive, i.e., they indicate a path to
realize a protocol that obtains a performance within the bounds.

Theoretical bounds on complex graph structures are in general very
difficult to derive, and in fact our bounds are valid on average for
all sources and destinations in the graph. To move a step forward
towards a real application we have implemented the RE flooding in a
simulator and showed the bounds hold with a very good approximation
also to estimate the performance of flooding from a single source.
We discussed simple heuristics that improve on the bound, exploiting
additional knowledge that was not included in the theoretical model for
mathematical tractability, and we have tested the strategy with a simple
loss model. In all these settings, our results are extremely encouraging.

Future work on this study include the use of RE flooding for specific
applications like time synchronization in sensor networks, a compari-
son with state-of-the art protocols based on trees or other dissemination
structures, and further theoretical analysis of the optimized protocol.
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