Live P2P streaming in CommunityLab:
Experience and Insights

Luca Baldesi*, Leonardo Maccari*, Renato Lo Cigno*
*Department of Information Engineering and Computer Science, University of Trento, Italy

{luca .baldesi, leonardo.maccari, renato. locigno}@disi .unitn.it

Abstract—Wireless Community Networks (WCNs) are flour-
ishing as a means of providing Internet access, but most of all as
an alternative, bottom-up approach to reduce the digital divide
and empower the users with control on their network. Video
streaming and conferencing are among the most resource hungry
and critical networked applications, and their support on WCNs
is fundamental, but difficult as Wireless Community Network
(WCN) environments are normally less resource-rich than the
traditional Internet. This work presents an initial analysis of an
experimental activity with PeerStreamer, a P2P video streaming
platform, on the Community-Lab, the WCN testbed of the EU
FIRE project CONFINE. The results we present shed light on
several different aspects, some good, some other less, of video
streaming on WCNs. The experiments highlight the feasibility
of P2P video streaming, but they also show that the streaming
platform must be tailored ad-hoc for the WCN itself to be able to
fully adapt and exploit its features and overcome its limitations.
On the other hand, the experiments also show that Community-
Lab is not yet fully representative of a WCN, and specifically of
those that participate in CONFINE.

I. INTRODUCTION

Global and local communications, the Internet for short, are
one of the key components of a modern, developed, thriving
society. Wireless Community Networks (WCNs), after more
than ten years from their first appearance [1] are experiencing
a revival and are blooming in Europe and all over the world.
The reasons for this interest and success are multiple and span
different disciplines: technical, legal, and socio-economic. The
economic and social value of the realization of open access
local networks was recognized in a more general context that
WCNs [2], [3], but it finds its perfect context in WCNs
because of their cheap and incremental deployment and their
grass-root, bottom-up design, development and management
[4]-[6].

In spite of, or maybe because of, their novelty and social
appeal, WCNs often raises skepticism on their technical fea-
sibility, if not outright suspicion on their value. Indeed, their
distributed nature, and the complexity of a switched wireless
network with all the associated technical challenges, make
service provisioning on a WCN non trivial. Moreover, the lack
of experience on such networks and the fact that they very
often “rise and grow” instead of being planned and designed
amplify the challenges.

This work was partially funded by the European Unions 7-th Programme for
research, technological development and demonstration under grant agreement
No. 288535 “CONFINE” — Open Call 1 project “OSPS”

Among the services that are more appealing, but also more
challenging to provide, live video streaming both for events
distribution and for conferencing cover a very special role.
They are bandwidth hungry, they require low and stable
latency, they hardly stand packet losses, and they do not
tolerate TCP-like Automatic Retransmission reQuest (ARQ)
mechanism, because the delay of a single time-out can be
more than the stream can admit, not to mention the fact
that ARQ mechanisms imply unicast transmission, which in
turn means that the source of the stream must have enough
resources for all users: The source should relay on resources
typical of a Content Delivery Network (CDN) rather than
those of a cheap self-installed Wireless Community Network
(WCN). Supporting the streaming with an external, cloud-
based system (e.g., Google hangout for conferencing) is also ill
suited for a WCN. In fact, the external connectivity in WCNs
is very often scarce or expensive, either for strictly commercial
reasons or for an explicit choice to favour the development and
provisioning of in-WCN services rather than making the WCN
a mere access network.

Multiple-unicast streaming is out of question on a WCN,
since community nodes are not expected to support such a
resource hungry scenario. As IP-multicast is typically not
supported by nodes and routers, a P2P approach for live
streaming is an appealing alternative, which also maps very
well with the social and technical approach of a WCN.

The work presented in this paper is strictly experimental
and it concerns the early insights and results we obtained
investigating the behavior of PeerStreamer! running on top
of Community-Labz. PeerStreamer, which is the evolution of
the streaming solution developed within the NAPA-WINE EU
Project?, is an Open Source fully distributed platform for P2P
live video streaming, and it is shortly described in Sect. II-A.
Sect. II-B describes the CONFINE* EU Project and, with some
more detail, the Community-Lab design and environment.
The Community-Lab development is still ongoing, and these
experiments are the first to have been attempted and run on
it with a real and working application. Albeit it is not yet
fully representative of the general environment of a WCN,
Community-Lab gives in any case a very good flavour of the
challenges found to provision a complex service on a WCN.

The contribution of this work lies in the joint analysis of

Thttp://peerstreamer.org
Zhttp://community-lab.net/
3http://napa-wine.eu
“http://confine-project.eu/

Fig. 1. High level representation of PeerStreamer video distribution process;
the source (represented in red) injects a configurable number of copies of each
chunk in the overlay (represented in green) and peers complete the distribution
adapting to the network resources; in our experiment the source injects a single
copy of the chunks.

PeerStreamer and Community-Lab. The results we present
give insight in the problems and issues underlying the de-
velopment of a complex experimental platform, and in the
subtleties needed to make it really representative of the real
environment. Moreover, the performance of PeerStreamer, the
overlay topology it builds, the required adaptations we discuss
in the final part of the paper are all novel contributions
toward building live video streaming services based on a P2P
approach that match the WCN networks spirit and technical
development.

Works related to P2P streaming in the Internet abound in the
literature, but specific works dedicated to P2P live streaming
over WCN are instead, to the best of our knowledge, entirely
missing, so that there is actually no “related work™ to discuss.
A recent PhD dissertation [7] includes some discussion also on
P2P streaming on WCNSs, but does not touch on live streaming
(streaming is intended as Video on Demand (VoD) retrieval),
neither presents experiments on real networks.

II. THE ENVIRONMENT

The setting of our experiments is the research infrastructure
named Community-Lab [8] developed and maintained by
CONFINE. On top of this infrastructure we deployed an
overlay of PeerStreamer nodes and measured the performance
achievable to check if medium/large scale streaming is feasible
on such an infrastructure.

A. PeerStreamer background

PeerStreamer is an open source P2P video streaming plat-
form currently supported and maintained by the University
of Trento. It is the outcome and follow-up of the NAPA-
WINE project and can be considered today the most advanced
open and documented platform to build P2P video streaming
services.

PeerStreamer, as depicted in Fig.1, is based on a non-
structured, highly dynamic, mesh overlay topology that sup-
ports the video distribution process through swarming of

elementary information units called chunks. A chunk is an ar-
bitrary information unit, but in our experiments we constantly
used the mapping of a single video frame per chunk, so as to
respect the structure of the video and minimize the encoding
delay at the source. The source of the video injects a single
copy of each chunk in the overlay transmitting it to one of
the peers chosen uniformly at random. The peers complete
the distribution selecting chunks and peers for the information
exchange following one of many strategies selectable in Peer-
Streamer when building the actual incarnation of the streamer
that one want to experiment with.

PeerStreamer is composed of several logical blocks: an I/O
module to capture video and reproduce it; a topology man-
agement subsystem to build and manage the overlay; a chunk
and peer selection (within the overlay) to choose what chunk
is to be exchanged with what peer in the overlay. Monitoring
tools and a networking abstraction level that helps with NAT
traversal and other similar issues (including segmentation and
reassembly of chunks to avoid IP fragmentation and selective
packet fast retransmission to avoid losing an entire chunk
because one packet was lost) complete the logical architecture
of the system. Besides the information on PeerStreamer home
page, a high level description of the logical architecture of
the system can be found in [9], while [10] reports the
software architecture of the core libraries, which guarantee
high portability and efficiency of the system.

The overlay topology is build with a network aware ap-
proach as explained in [11]. In our experiments, however, the
topology management has a marginal role, as the very limited
number of nodes available collapses the topology basically to
a full mesh.

The order in which these chunks are selected is instead
generally important as it allows peers endowed with a lot of
resources to contribute more, and it also allows a peer to isolate
other peers that are not able to contribute useful chunks to the
peer itself. PeerStreamer includes different selection strategies
including optimal ones derived from [12]; however, during our
experiments on the Community-Lab we use a random chunk
selection for the sake of results interpretation, as our main goal
is understanding the behavior of the WCN level distribution
process. The chunk exchange protocol is based on a Push/Pull
approach with Offer/Select and Confirmation [13], [14], which
ensure that no duplicated chunks are received by any peer and
that network resources are well exploited without building long
transmission queues that would increase the chunk delivery
and consequently also the playout delay.

B. CONFINE and Community-Lab

One of the objectives of the CONFINE IP EU Project is
to support the research on WCNs and foster their growth.
Community-Lab is the testbed being deployed by CONFINE
to this purpose. It is an overlay network ideally built on top
of the WCNSs that participate to CONFINE, namely Guifi.net?,
FunkFeuer® and AWMN/, respectively in Spain, Austria and

Shttps://www.guifi.net/
Shttp://www.funkfeuer.at/
http://www.awmn.net

Testbed
server

Te

(C'\?ntme:EIE/ \ [Community |
_ Netwo f 3 Network B ¢

S~ \ -
\ g . /\ M
' FEDERICA
—

Fig. 2. Community-Lab architecture; blue nodes represent the community
nodes while the gray boxes represent the testbed nodes.

Greece. The three networks are federated using the network
infrastructure provided by FEDERICAS®.

The Community-Lab is a network of “research devices” co-
located with a subset of the nodes in the three WCNs. Research
devices are not directly part of the WCN, but are devised to
provide an isolated environment for experiment, ensuring that
the normal WCN operation is not jeopardized. Each device is a
standard PC that researchers can access via different interfaces;
it generally doesn’t have a dedicated wireless interface, but
it’s interconnected through a local interface with a real node
of a WCN. In each research device the researchers can run
their own applications, which exploit the overlay defined on
the WCNs to communicate. The final goal of Community-
Lab is to provide a realistic scenario for researchers to test
applications as if they were running on a real WCN.

To help the automation of the experiments, Community-Lab
provides a testbed server that orchestrates the research devices
and is accessible by researchers. The server can be used
to pilot the research devices using a REpresentational State
Transfer (REST) web Application Programming Interface
(API); Fig.2 depicts the logical architecture of Community-
Lab.

Besides being connected using the WCNs, the research
devices are also reachable using a dedicated Virtual Private
Network (VPN) that is used for management. The researcher
can use the server to control the nodes via the VPN in
order to avoid problems due to addressing, Network Address
Translation (NAT), etc. The researcher’s computer, can be
added to the VPN too in order to have direct access to the
research devices.

III. EXPERIMENTS SETUP

Community-Lab supports the experiments of multiple re-
searchers using the Slice-based Federation Architecture [15].
The testbed nodes (represented in gray in Fig.2) are called
research devices and are an actual part of the WCNs. Research
devices are host machines with virtualization capabilities,
wired to a community node. Each researcher has access to a
certain number of research devices, forming a slice available
for his experiments. The researcher can choose to have a

8http://www.fp7-federica.eu/

slice contained in a single WCN or spanning across multiple
ones. Each research device can allocate a number of virtual
machines. In the Community-Lab terminology, each virtual
machine is called a sliver. A sliver is the host in which
the researcher can run his own software. The same research
device can belong to two slices referring to two different
experiments, in that research device each experiment will run
on a different sliver. Via the REST web API it is possible
to query the status of research devices, slices and slivers. The
typical workflow to perform experiments with the Community-
Lab testbed comprehends the following steps:

1) Create an account on the web controller’;

2) Log in the web controller and create a new slice;

3) Select the research devices that belong to the slice and
create a sliver for each of them;

4) Customize the slivers as needed;

5) Start the slice.

Each sliver is accessible using two addresses, the first is
an IPv4 address in a subnet shared by all the slivers and
routed via the WCNs and FEDERICA. The second is an
IPv6 address reachable via the management network and the
VPN. While each couple of slivers can communicate using the
IPv6 network, IPv4 connectivity is not guaranteed; it depends
on the condition of the underlying WCNs. After the slice
creation, researchers should add their research computer to
the CONFINE management network and start to interact with
their slivers, for instance running programs and collecting logs.
The web controller offers an easy guided way to perform this
operation.

A. The way experiments are managed

At the time of writing, the Community-Lab is still a work
in full progress so that a special effort is needed to avoid some
pitfalls. This paper wants to describe and share our experience
and also some of the tools we used to perform the experiments.
First of all, we developed a simple Bash framework and made
it freely available on the web'” to perform experiments within
the Community-Lab. The goal of the framework is to automate
actions needed to perform experiments, so it interacts with the
web controller and directly with the appropriate sliver. The
framework is based on atomic experiments, each experiment
is defined through a set of variables such as the slices to be
used and the executables to be run on each sliver. Provided an
initial configuration file, our system exposes these command
interface to the researcher:

e start: it collects the slivers addresses of the indicated
slice, filter them accordingly to the configuration, upload
in each sliver the chosen executable and the configuration
files, and start their execution.

¢ stop: to stop the executable execution on the slivers.

e status: to check the slivers status, i.e., if they are
reachable, responsive and are running the executable.

e command <cmd>: to run a remote command on all the
slivers.

“https://controller.confine-project.eu/
1Ohttp://halo.disi.unitn.it/baldesi/PublicGits/confine\ _test_scripts.git

e retrieve <file>: to retrieve files from all the sliv-
ers;

e clean: to stop the slivers and delete all the experiment
files (on the slivers and locally).

This framework also enables the preparation of the slivers
for the experiments and troubleshooting some problems we
met during the tests. For instance, we realized that not all the
slivers can communicate using the [IPv4 network, this might be
due to the WCNss, to the poor connection among the networks,
or to any factor out of the researcher control, so the Bash
framework allows restricting the experiment to the devices
suitable for the experiment. Another problem we encountered
is that some of the slivers are not time-synchronized and
Network Time Protocol (NTP) cannot run on them. Since the
time in each sliver depends on the system time in the research
device we could not synchronize the slivers. When running
and evaluating real-time system like live streaming this is a
non-marginal impairment. For the time being we got around
the problem getting the difference from a common time source
and rescale our logs using the correct time difference.

B. Experiments performed

Our experiments are composed of ten iterations of identical
runs. Each run lasts ten minutes and between each run, slivers
are stopped for five minutes. We have to use only slivers
belonging to the Guifi.net WCN due to the aforementioned
issues, for a total of 16 slivers, far less than what we would
like to test, but still meaningful for the experiments and also
for small-scale service provisioning.

During our experiments, PeerStreamer uses a low bitrate:
300kbit/s not to stress the WCN resources. We run exper-
iments in which the PeerStreamer source injects only one
copy of each video chunk in the overlay. This is a very
challenging scenario, since with the resources of one single
video stream we create a whole distribution system. During
each run we collect information both about the state of the
network and about the performance of PeerStreamer. We use
Internet Control Message Protocol (ICMP) Echo messages to
measure the reachability and Round Trip Time (RTT) between
each couple of nodes over the [IPv4 WCN. We also measure
the ratio of successfully arrived video chunks and the delay
from their generation at the source node.

We analyze the data collected in the five central minutes of
each run, i.e., we discard the data at the beginning and end
of each run to consider only the steady state behaviour of our

system.

ICMP data is analysed to extract RTT mean and standard
deviation in order to have an idea of the underlying network
during the peer-to-peer overlay. The rate of ICMP packets is
low enough not to interfere with the experiment. The code for
the logs analysis is freely available'!.

In conditions similar to those of these experiments, i.e.,
a small overlay with nodes highly clustered, PeerStreamer
has been shown to work perfectly (i.e., no chunk losses or
excessive chunk delivery time) in NAPA-WINE deliverables,

http://halo.disi.unitn.it/baldesi/PublicGits/peerstreamer_logs_analyzer.git/

E-Y
T

Lost ICMP packets (%)
N w

=
T

0 - - - >y P re . 1 L 1 L L
M = @@ 1N M ™~ O < — O N O o <
w (%] %] [] w wn 0w L B N - - ()
w n wn v o wn w
Slivers

Fig. 3. ICMP traffic loss percentage with respect to the streaming source
during the experiment for each of the involved slivers.

and in experiments in our campus WiFi network. We do not
reports the relative results as they do not represent a real
comparison, and can be mistakenly interpreted ad a proof that
Community-Lab is not working correctly, while instead we
think that Community-Lab results are representative of the real
challenges faced into a WCN by a live streaming application,
challenges obviously not present in a WiFi network just
serving as access to a resource-rich campus network.

IV. RESULTS AND DISCUSSION

The experiments collect measures and performance both at
the IP level through ICMP messages and at the applications
level directly within PeerStreamer. First in Sect.IV-A we
discuss the basic IP level performance and characteristics,
whose behavior is fundamental to understand the performance
of the application above it, which is discussed in the remaining
subsections.

A. The Community-Lab Connectivity

As said, we had to use only slivers in the Guifi.net network
in Catalufia. Nevertheless, the Guifi.net network is itself a
collection of separate islands that can be physically far from
each other. We measured exactly this kind of behaviour using
ICMP. We selected 10 slivers belonging to an island, and 6 to
another one, and this is reflected by their network performance.
Figs.3 and 4 show packet loss and RTT measured from any
sliver with respect to the one acting as the video source (the
source, from now on). It is clear that some of the slivers have
much better connectivity than the others and in particular the
slivers s14 and s15 have a very poor condition toward the
source and all the slivers in the other island.

Fig.5 reports the average packet loss experienced by each
sliver toward all other slivers in the test. Again, we see that
sl4 and s15 experience a network performance much worse
than the rest of the slivers. Sliver s15 in particular is subject
to a large number of out-of-scale (larger than 200 ms) RTT
values toward the source.

For this reason the plots in Fig.6 exclude s15, in order
to have a smaller scale and an easier to read graph. Fig.6

RTT (msec)
[\) w B w [2] ~ [es]
o o o o o o o
B - = R

-
o
-

\
Q
\
®

-0 6 -6
o~ o g
nwn o n o un

o
sOp
slp
S2h
s3p -
s4p -
s5p
s10f -
s11
s12r
s13
sl4r
s15

Slivers

Fig. 4. Average RTTs of the ICMP traffic from all the slivers to the source.

4.0

g W W
& o &
T T T

Lost ICMP packets (%)
= N
S =)
T -

=
[=)
T

o
%
]
&
[
1
?
1
[}
i
-
I
®
\

L L L I L L L L
N v H VL H VN 4 L VB N A OB 0 +q 4
n (0] wn n wn

Fig. 5. ICMP traffic loss during the experiments for each involved slivers.

shows two matrices representing the average and the standard
deviation of the RTT value between every pair of slivers. These
data confirm that in our experiments we used slivers coming
from two different islands, that show different connectivity
conditions. In the first island we have nodes with small RTT
and little variation, in the second island the nodes have worse
performances, larger RTT and higher variations.

These measures are very important to understand the
behaviour of Community-Lab and PeerStreamer. For
Community-Lab we can say that in its present state it offers
an efficient platform to set-up, run and manage experiments,
but still it has to mature to be really representative of
WCNs. In fact, analysis of WCN topologies [16], [17]
have shown that WCNs generally offer stable paths and
performances and many more nodes and hosts than available
in Community-Lab. The heterogeneous conditions we found
in our experiments probably depend more on the development
stage of Community-Lab than on the state of the underlying
WCNs. Indeed, such conditions offer an interesting ground
to test PeerStreamer. Given the features of the underlying
network we expect PeerStreamer to rely principally on the
nodes that show a better average connectivity and the next
section will show that this effectively happens.

Echo sender Average (msec)
O = M™N M <
O MNMSINONSNOO A~
lﬂlﬂlﬂlﬂlﬂlﬂlﬂlﬂlﬂlﬂlﬂh‘nu‘nwm
s0 - . -
sl-
S2-
24
s3- .
s4 -
5 s5- 20
> s6-
g s7- 16
‘5 s8 - b
5 s9-
Ws10-
sll- 8
s12-
s13 - 4
sl4f
0
Echo sender Stddev (msec)
O = N M <+
O NMSTINONOO A
AR U A G G A A L 20
s0 -
sl- 17
s2-
S31 N B
s4-
L« S5- 12
S s6-
g ST 10
‘5 S8 -
5.5 75
Ws10-
s11- 50
512-
s13- 25
s14 -
0.0

Fig. 6. Upper plot: average RTT from each sliver to the others, slivers
are sorted based on their RTT with the source; bottom plot: RTT standard
deviation from each sliver to the others.

B. PeerStreamer Overlay Topology

In order to distribute the video chunks, PeerStreamer sets up
an overlay network using complex metrics, partially described
in (Sect.II-A). This overlay is time-variant to counter churn
(not present in these experiments, but fundamental in driving
P2P systems performance), but its average behaviour can be
represented with an adjacency matrix showing the number of
chunks exchanged from one peer to another. Fig. 7 shows the
number of chunks sent between every pair of slivers during
a specific run, thus giving a pictorial representation of the
average behavior of the streaming session. Averaging these
results over multiple runs is not meaningful; however, the other
runs behavior is coherent with the one represented here.

The first thing to note is that the first column of Fig. 7 has a
uniform color on all rows. PeerStreamer in fact uses a simple
distribution strategy for the source: the original video chunk
is sent to a peer chosen with uniform probability. This grants
a reliable and robust delivery even in unstable scenarios in
which peers might suddenly disconnect. The second thing to
note is that the comparison between Fig.7 and Fig.6 shows
that the majority of the chunks are sent from the slivers that
show better connectivity. This confirms that PeerStreamer is
able to exploit the RTT and link loss in order to obtain the
best delivery network and concentrate the efforts on the more

virtuous slivers. Finally, we see that each sliver receives a

Chunks sender Chunks number

O MNMSS N
O N MY N O~ oo o oo
n un ununununuununnnnnononononaon

" ~ W2400
~ M2100
~ M1800
- 1500
- | 41200

s10 - | {900
sll 1

s12 | {600
s13 1

s14 - | 1300
sl5 - 0

Fig. 7. Chunks exchanged during a run of the experiment; the color of each
block represents the number of chunks exchanged from the sliver on the x-axis
to the sliver on the y-axis.

Chunks receiver

0.5

Average number of hops from the source

0.0 50 100 150 200 250 300

Time (s)

Fig. 8. Variation of hops of the delivered chunks per peer during a run.

fair amount of chunks from the other ones, and that no sliver
behaves as a bottleneck for the whole network.

Fig. 8 shows the average number of hops from the source to
all destinations versus time. In fact each received chunk has a
field indicating the number of peers it visited from the source
before the reception. Depending on the initial destination of
the newly generated chunk, which is random according to
Fig.7, the hops number can change. Fig. 8 report the moving
average taken every few seconds on every sliver. The average
value is quite stable for each peer and approximately constant.
Fig.9 shows instead the distribution of the number of hops
for all received chunks, for each peer. Again, we see that
the distributions are all quite similar, which guarantees a fair
distribution of the delays for the received chunks among all
the slivers.

These results show that the algorithms that PeerStreamer
uses to build its topology behave well also in the challenging
scenario of the Community-Lab: PeerStreamer exploits the
nodes that have more resources, but does not create bottle-
necks, every sliver receives chunks with a similar distribu-
tion of hop count and the distribution graph is dynamically
changed.

N w B wul [=)]

Number of chunks received x10*

=

Number of hops

Fig. 9. Number of the overall chunks received by the peers versus the number
of hops of the chunks.

As already remarked dynamism is important in peer-to-peer
video streaming: not only churn may change the peers partici-
pating in the distribution, but also the network conditions may
vary quickly and the distribution graph must be able to cope
with them.

C. Chunk Loss and Accuracy

Fig. 10 shows the overall percentage of lost chunks during
an experiment. We can easily note how the performance
reflects the connectivity conditions measured with ICMP mes-
sages. The two slivers that present the highest loss, and also
the highest RTT to the other slivers (see Fig.6) are the ones
that loose the highest number of chunks. Fig. 11 represents the
fraction of received video chunks averaged for time windows
of fixed length during the evolution of the experiment. The
two graphs show the data for the first 14 slivers (the source
is excluded) and the data for s15 separately. As said, s15 is
the sliver that shows the worst performance in terms of RTT
to any other sliver in the experiment. This heavily influences
the number of lost chunks, even more than the loss rate. To
understand this, consider that PeerStreamer is designed for
live streaming so that receiving an old chunk is not useful.
Since s15 has very high RTTs with the other slivers, it is not
able to contribute to the overall distribution process, but it
also receives the chunks with high delays. As a consequence,
some of the chunks, even if available to be transferred, are
simply considered uninteresting by s15. Fig. 11 shows that
for the whole experiments the chunk loss is almost always
lower than 10% and for the majority of the time lower than
5%. These are values that allow to say that video streaming
is viable on the Community-Lab and that the presence of
a peer with vary bad performances does not impact the
performance of the rest of the peers. Notice that improving
slightly the networking conditions, having the source injecting
multiple copies of the chunks in the overlay, and developing a
customized incarnation of PeerStreamer may quickly lead to
a much better performance at the application level, even if the
network conditions remains so harsh.

10

Percentage of chunk loss (%)

O 4 N M S N O~ QO o
[BT " B T B, BV, BV, TR ¥, B, Qs
(0]
S

sl1

N m < N
L I e B, B
wn o o un wn

Peers' hostname

Fig. 10. Overall chunk loss during the experiment for each sliver.

2 Jool
< o
w0 090}
o
S 08l
2 I]
30 ‘ ‘ . ‘ ‘
g 0.84
@ 10 . :
5 \/ \/W
£ os} !
3
= 0.6} 1
o
g 04]
o
0.2
0.05 50 100 150 200 250 300

Time (s)

Fig. 11. Fraction of received chunks for each peer along one experiment.
First graphs shows data for slivers s0-s14, second graph for sliver s15.

Delay distribution

1.0
3000}
10.8
« 2500t
R
Q
£ 2000} 1962
o 3
° 3
g 1500 {04 &
£
=
= 1000
10.2
5001
0 : : .0
10° 10! 10° 10 10(;t
Delay (msec)

Fig. 12. Overall chunk delay distribution for sliver s12.

D. Chunk delay

Fig. 12 shows the chunk delay distribution during the exper-
iment for one sliver. For the sake of clarity we chose to plot the
data relative to one sliver only, and to use a log scale, otherwise
the plot would be too much compressed. Note that using a log
scale for the x-axis makes the area underlying the blue curve

180

160l *°° 50th percentile ‘ : R
e - 80th percentile Lo
140F — R] 3’

120f ‘ fo g Y
100} e ‘ : ‘ : T

8Ot ‘,,l

Delay (msec)

60 R
a0l /e ‘

20 _// St

1T 2 3 4 5 6 7 8 9
Number of chunk hops

Fig. 13. Median chunk delay grouped by number of hops for sliver s12.

not representative of the cumulative number of samples, for
this reason we also report the cumulative distribution as the
green curve.

From the figure we can see that eighty percent of the
packets arrive within 110 ms which is a very good delay for
live streaming, and it would even be acceptable for a video
call or video conferencing. Fig. 12 shows also the presence
of two main modes in the distribution of delays, which can
be explained looking at Fig. 13, which reports the 50-th and
80-th percentile of the delivery delay versus the number of
transmission hops of the chunk. The chunks that are received
directly from the source always present a very short delay (the
50-th and 80-th percentiles are very similar): these chunks are
pushed by the source, so their delay is only half the RTT
from the source plus obviously the transmission delay. The
delay sharply increases for packets received after two hops,
and also the 80-th percentile diverges more from the median
(50-th percentile), and a then smoothly increases for paths
longer than 2 hops. This is highly positive, since it shows
that PeerStreamer can handle the distribution of chunks on
long paths keeping the overall delay low, note however that
the number of chunks delivered using more than 4 hops is
limited (see Fig.9), so that the overall delay distribution is
more favourable, as seen in Fig. 12.

V. CONCLUSIONS

A. Community-Lab Conclusions and Best Practice

Since different WCNs in CONFINE are missing a direct in-
terconnection, streaming across different WCN is not feasible,
not even among islands of the Community-Lab, thus we had to
limit experiments to Community-Lab slivers on a single WCN.
This limitation can be overcome on the real WCN exploiting of
external services, like the one provided by STUN servers [18].
The WCN nature of the testbed is a challenging scenario to
deal with, but, since the growing audience around WCNSs, it is
also of major interest from the research the point of view. The
initial Community-Lab network analysis, which gives results
showed in Sect. IV-A, indicates the testbed well support even
resource hungry applications.

During tests we developed our framework to work with
Community-Lab APIs. That effort is an initial step in order

to perform further experiments both from our side and from
other researchers side. The limitations like the presence of
slivers not mutually reachable, the lack of system clock
synchronization, and the limited number of deployed testbed
nodes, are for the moment preventing a deeper analysis in the
video streaming context. Nevertheless, Community-Lab is still
a work in progress and a great chance to perform experiments
hands on on real WCNs infrastructures and resources.

B. Live Streaming Conclusions

Live peer-to-peer video streaming using PeerStreamer
within WCNss is already possible, even on the virtualized and
limited environment offered by the Community-Lab. Results in
Sect. IV-B compared with the findings of Sect. IV-A, illustrates
that, the way used by PeerStreamer to build up the distribution
overlay, exploits important network features like links RTT
and loss. Sect.IV-C presents how the built topology and the
underlying network led to a live content distribution with
contained loss, which is one of the basic conditions to achieve
a good quality of video streaming. From the results shown in
Sect. IV we can then conclude the feasibility of live video
streaming in the WCNs context and the reliability of the
underlying Community-Lab.

C. Future Work

PeerStreamer has generally proven to well suite on large
scale, Internet-like networks. A more specific tailoring for
WCNs networks could improve performances. Especially dur-
ing topology management, dealing with such occasionally
lossy link as reported in Sect.IV-A, a dedicated peers selection
algorithm during initial chunk injection in the overlay could
bring to avoid an excessive initial chunk loss. That strategy
obviously would decrease the overlay stability and thus should
be further studied.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

REFERENCES

S. Jain and D. Agrawal, “Wireless community networks,” IEEE Com-
puter, vol. 36, no. 8, 2003.

R. Battiti, R. Lo Cigno, M. Sabel, F. Orava, and B. Pehrson, “Wireless
LANSs: From WarChalking to Open Access Networks,” Mob. Netw. Appl.,
vol. 10, no. 3, pp. 275-287, Jun. 2005.

J. Barceld, A. Sfairopoulou, and B. Bellalta, “Wireless Open Metropoli-
tan Area Networks,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 12,
no. 3, pp. 34-44, Jul. 2008.

P. Frangoudis, G. Polyzos, and V. Kemerlis, “Wireless community net-
works: an alternative approach for nomadic broadband network access,”
IEEE Communications Magazine, vol. 49, no. 5, 2011.

R. Lo Cigno, “Untethered Local Communications: From Wireless Ac-
cess to Social Glue,” in IEEE Wireless On-demand Network Systems
and Services (WONS 2011), Jan. 2011, pp. 42-43.

M. Kas, S. Appala, C. Wang, K. Carley, L. Carley, and O. Tonguz, “What
if wireless routers were social? approaching wireless mesh networks
from a social networks perspective,” IEEE Wireless Communications,
vol. 19, no. 6, pp. 3643, 2012.

A. Alasaad, “Content sharing and distribution in wireless community
networks,” University of British Columbia; http:\ \circle.ubc.ca/handle/
2429/44205, PhD Thesis, April 2013.

A. Neumann, I. Vilata, X. Le6n, P. E. Garcia, L. Navarro, and E. Lopez,
“Community-lab: Architecture of a community networking testbed for
the future internet,” in IEEE 8th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob),
Barcelona, Spain, 2012.

R. Birke, E. Leonardi, M. Mellia, A. Bakay, T. Szemethy, C. Kiraly,
R. Lo Cigno, F. Mathieu, L. Muscariello, S. Niccolini, J. Seedorf, and
G. Tropea, “Architecture of a network-aware P2P-TV application: the
NAPA-WINE approach,” Communications Magazine, IEEE, vol. 49,
no. 6, 2011.

L. Abeni, C. Kiraly, R. Russo, M. Biazzini, and R. Lo Cigno, “Design
and Implementation of a Generic Library for P2P Streaming,” in In
Workshop on Advanced Video Streaming Techniques for Peer-to-Peer
Networks and Social Networking, Florence, Italy, Oct. 2010.

S. Traverso, L. Abeni, R. Birke, C. Kiraly, E. Leonardi, R. Lo Cigno,
and M. Mellia, “Experimental comparison of neighborhood filtering
strategies in unstructured P2P-TV systems,” in Proc. of the IEEE Int.
Conf. on Peer-to-Peer Computing (P2P’XII), Sept. 3-5, 2012, pp. 13-24.
L. Abeni, C. Kiraly, and R. Lo Cigno, “On the Optimal Scheduling of
Streaming Applications in Unstructured Meshes,” in In IFIP Networking,
Aachen, Germany, May 2009.

A. Russo and R. Lo Cigno, “Delay-Aware Push/Pull Protocols for Live
Video Streaming in P2P Systems,” in In IEEE International Conference
on Communications (ICC’10), May 2010.

R. Birke, C. Kiraly, E. Leonardi, M. Mellia, M. Meo, and S. Traverso,
“Hose rate control for P2P-TV streaming systems,” in Peer-to-Peer
Computing (P2P), 2011 IEEE International Conference on, Aug 2011,
pp. 202-205.

L. Peterson, R. Ricci, A. Falk, and J. Chase, “Slice-based federation
architecture,” Ad Hoc Design Document (July 2008), 2010.

L. Maccari, “An analysis of the Ninux wireless community network,”
in 9th IEEE Int. Conf. on Wireless and Mobile Computing, Networking
and Communications (WiMob), Oct 2013, pp. 1-7.

D. Vega, L. Cerda-Alabern, L. Navarro, and R. Meseguer, “Topology
patterns of a community network: Guifi.net,” in 2012 IEEE 8th Interna-
tional Conference on Wireless and Mobile Computing, Networking and
Communications WiMob, 2012, pp. 612-619.

J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session traversal
utilities for nat (stun),” Internet Requests for Comments, 2008.

